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Magnetic Resonance Imaging (MRI)

Non-invasive imaging, great versatility
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Magnetic Resonance Imaging (MRI)

Non-invasive imaging, great versatility

Inherently slow, protocol takes = 30 min
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Magnetic Resonance Imaging (MRI)

Non-invasive imaging, great versatility
Inherently slow, protocol takes = 30 min

This limits the quality and resolution of the images
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Magnetic Resonance Imaging (MRI)

Non-invasive imaging, great versatility

Inherently slow, protocol takes = 30 min

This limits the quality and resolution of the images

This thesis: use prior knowledge about MR signals to

Reduce imaging time without sacrificing image quality

Mitigate image artifacts and provide quantitative imaging
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Joint reconstruction
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Joint reconstruction

Images with multiple contrasts are clinically routine
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Joint reconstruction

Images with multiple contrasts are clinically routine

Using 4-times less data than conventional (4x speed up):

SparseMR| N 0.4 % error

State of the art: Sparse MRI
Lustig et al. MRM’'07
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Joint reconstruction

Images with multiple contrasts are clinically routine

Exploit their similarity for accelerated imaging

Using 4-times less data than conventional (4x speed up):

SparseMR| N 0.4 % error

Proposed 2.3 % error

State of the art: Sparse MRI
Lustig et al. MRM’'07
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Proposed: Joint Reconstruction
Bilgic et al. MRM’11
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Joint reconstruction

Diffusion Spectrum Imaqging (DSI)

DSI allows investigation of white matter connectivity of the brain

But suffers from very long scan times (~50 min)
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Contributions

] Joint reconstruction

I Diffusion Spectrum Imaging (DSI)

= DSl allows investigation of white matter connectivity of the brain

= But suffers from very long scan times (~50 min)

= 3-times less data than conventional — 17 min

White matter fiber tracts

Fully-sampled Il 50 min
Proposed ) 17 min

Fully-sampled data: Proposed:
50-min scan time 17-min scan time
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Joint reconstruction

Diffusion Spectrum Imaging (DSI)

Quantitative Susceptibility Mapping (OSM)

QSM guantifies tissue iron concentration and vessel oxygenation

Susceptibility cannot be observed directly, needs to be inferred
from MR signal phase
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Contributions

] Joint reconstruction

. Diffusion Spectrum Imaging (DSI)

I Quantitative Susceptibility Mapping (QSM)

= QSM quantifies tissue iron concentration and vessel oxygenation

= Susceptibility cannot be observed directly, needs to be inferred
from MR signal phase

= QSM reveals increased iron during aging in striatal and brain stem
regions

Young Group

Elderly Group
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Joint reconstruction

Diffusion Spectrum Imaging (DSI)

Quantitative Susceptibility Mapping (OSM)

MR Spectroscopic Imaging (MRSI)

In addition to spatial mapping, MRSI also provides encoding in
resonance frequency
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Joint reconstruction

Diffusion Spectrum Imaging (DSI)

Quantitative Susceptibility Mapping (OSM)

MR Spectroscopic Imaging (MRSI)

In addition to spatial mapping, MRSI also provides encoding in
resonance frequency

At each voxel, this yields a 1-d spectrum of relative biochemical
metabolite concentrations

brain metabolites
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Joint reconstruction

Diffusion Spectrum Imaging (DSI)

Quantitative Susceptibility Mapping (OSM)

MR Spectroscopic Imaging (MRSI)

Due to limited spatial resolution, strong lipid signals outside the
brain contaminate the metabolite spectra inside the brain

Sum over Lipid Frequencies
State of the art

Proposed

Lee et al. Bilgic et a.
rle MM sMRV10 MRM'12 5




Joint reconstruction

Diffusion Spectrum Imaging (DSI)

Quantitative Susceptibility Mapping (OSM)

MR Spectroscopic Imaging (MRSI)

Due to limited spatial resolution, strong lipid signals outside the
brain contaminate the metabolite spectra inside the brain

Sum over Lipid Frequencies
State of the art

Proposed

Lee et al. Bilgic et a. Structural Black: proposed
rle U&  smrw10 MRM’12 10 Image Blue: Lee et al.



Problems that were addressed, why they are worth solving

Contribution to the field
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Problems that were addressed, why they are worth solving

Contribution to the field

In particular,
Joint reconstruction of similar images
Accelerated Diffusion Spectrum Imaging
Quantifying tissue iron concentration

Lipid artifact suppression for Spectroscopic Imaging
Postpone to closed session
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Problems that were addressed, why they are worth solving

Contribution to the field

In particular,
Joint reconstruction of similar images
Accelerated Diffusion Spectrum Imaging
Quantifying tissue iron concentration

Lipid artifact suppression for Spectroscopic Imaging
Postpone to closed session
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In MR, the data acquired are the Discrete Fourier Transform
(DFT) samples of the object being imaged.

Given sufficiently many samples (i.e. at Nyquist rate), taking
the inverse DFT gives the spatial image.



If we sample more of k-space, scan time increases

For higher resolution images, we need to go further out
In k-space => increased scan time

e (Ui 2



MRI Image Reconstruction

= For faster imaging, we can acquire less data (below Nyquist
rate) but this incurs aliasing.
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MRI Image Reconstruction

= For faster imaging, we can acquire less data (below Nyquist
rate) but this incurs aliasing.

AL LR
Undersample
remove 60% of data

0 . _
rle i } 60% reduction in scan time



MRI Image Reconstruction

= For faster imaging, we can acquire less data (below Nyquist
rate) but this incurs aliasing.
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Undersample

remove 60% of data

as m RMSE =11.7 % 60% reduction in scan time



Compressed Sensing (CS) reconstruction

= Reduce aliasing artifacts by imposing prior knowledge in
reconstruction?

= CS prior: image Is sparse under a transform

s

28 [1] Lustig et al. MRM 2007

e m RMSE =5.9 %



Total Variation prior

= Total Variation (TV): Most popular transform for CS recon

= Prior: spatial gradient of the image is sparse

Gradient

A



Total Variation prior

= Total Variation (TV): Most popular transform for CS recon

= Prior: spatial gradient of the image is sparse

. . 2 .
MiNimg|[Fq - img — datall,” + 1+ |G - imgll,

¥ N v \
undersampled image k-space gradient
DFT samples operator

Gradient
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Total Variation prior

= Total Variation (TV): Most popular transform for CS recon

= Prior: spatial gradient of the image is sparse

. . 2 .
Miny,,||Fg - img — datal|,” + 1 ||G - lmg||1'

\
¥ \ \ |
undersampled image k-space Total Variation
DFT samples
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In clinical MR, it is common to image the same region of
Interest under multiple contrast settings

This aims to increase the diagnostic power of MRI as tissues
exhibit different characteristics under different contrasts

For instance, SRI24 atlas! contains such multi-contrast data,

proton density

[1] Rohlfing et al. Hum Brain Map, 2010
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In clinical MR, it is common to image the same region of
Interest under multiple contrast settings

This aims to increase the diagnostic power of MRI as tissues
exhibit different characteristics under different contrasts

For instance, SRI24 atlas! contains such multi-contrast data,

T2 weighted

[1] Rohlfing et al. Hum Brain Map, 2010
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In clinical MR, it is common to image the same region of
Interest under multiple contrast settings

This aims to increase the diagnostic power of MRI as tissues
exhibit different characteristics under different contrasts

For instance, SRI24 atlas! contains such multi-contrast data,

T1 weighted

[1] Rohlfing et al. Hum Brain Map, 2010
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In clinical MR, it is common to image the same region of
Interest under multiple contrast settings

This aims to increase the diagnostic power of MRI as tissues
exhibit different characteristics under different contrasts

For instance, SRI24 atlas! contains such multi-contrast data,

T2 weighted T1 weighted proton density




To couple multi-contrast signals,
take the £, norm across the contrast dimension,

then apply ¢, regularization to the combination,

L 2 N L 2 1/2
Faxi = yile’ + 4% (3, (¥0%)
zizlll aX;i — Yill2 i - (Wx)i
| | \ ' J
| £, across contrasts in transform domain
data consistency for L images \ ' )

£, over combination

Prior: few non-zero rows

— >
(Px); ... (Px),
| | 1>

£, across
contrasts
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To couple multi-contrast signals,
take the £, norm across the contrast dimension,

then apply ¢, regularization to the combination,

L 2 N L 2 1/2
Faxi = yile’ + 4% (3, (¥0%)
zizlll aX;i — Yill2 i - (Wx)i
| | \ ' J
| £, across contrasts in transform domain
data consistency for L images \ ' )

£, over combination
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To couple multi-contrast signals,
take the £, norm across the contrast dimension,

then apply ¢, regularization to the combination,

L 2 N L 2 1/2
Faxi = yile’ + 4% (3, (¥0%)
zizlll aX;i — Yill2 i - (Wx)i
| | \ ' J
| £, across contrasts in transform domain
data consistency for L images \ ' )

£, over combination

M-FOCUSS! is an iteratively reweighted £, regularization
algorithm that solves this optimization problem

[1] Cotter et al. T Signal Proces, 2005
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Alternative approach: model the transform coefficients across
contrasts for a single voxel as random variables with
common variance
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Alternative approach: model the transform coefficients across

contrasts for a single voxel as random variables with
common variance

The most likely variance at each voxel is estimated using
Bayesian inference given the observed k-space data
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Alternative approach: model the transform coefficients across
contrasts for a single voxel as random variables with
common variance

The most likely variance at each voxel is estimated using
Bayesian inference given the observed k-space data

This model is more flexible than L1-L2 regularization, as
there is no common sparsity support assumption across
contrasts

rle (Ui



Fox =y

Fq: partial Fourier transform

X: Image to be estimated
Y. undersampled k-space data

rle [Uin .



VEox =Vy

V = (1 _ e—anw/n)

k-space representation of differencing: x; — x;_1

rle [Uin 43



F_Q6:5;

O image gradient to be estimated
y: modified k-space data
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Observation model - sparse representation

FQSZS;

O image gradient to be estimated
y: modified k-space data

45




Assuming that the k-space data are corrupted by complex-

valued Gaussian noise with 0'2 variance,

p(¥|6,0%) ~ N(Faé —¥,0°)

Y
Gaussian

likelihood

rle [Uin 46



Bayesian CS places hyperparameters Y on each pixel,

p(S; | vi) ~ N (0, vi)

Gaussian prior

So that it" pixel is a zero-mean Gaussian with variance V;
l



Bayesian CS places hyperparameters Y on each pixel,

p(S; | vi) ~ N (0, vi)

Gaussian prior

So that it" pixel is a zero-mean Gaussian with variance V;
l

Multiplicative combination of all pixels give the full prior
distribution,

p(S‘Y)NUN(O»Vi)

rle [Uin ®



Using the likelihood and the prior, we invoke Bayes’ Rule to
arrive at the posterior,

p(6|y,¥v) < p(6|y) p(¥y|¥b)

rle [Uin w©



Using the likelihood and the prior, we invoke Bayes’ Rule to
arrive at the posterior,

p(6|y,y) < p(8|y) p(y|éd)
Gau:'ssian Gau'ssian Gau|ssian

posterior prior likelihood

rle [l 50



Using the likelihood and the prior, we invoke Bayes’ Rule to
arrive at the posterior,

p(6 |y, y) ~ NM(uX)

pu=TF, A"y
Y =T —TF,"A"1F,T

rle [l o



Using the likelihood and the prior, we invoke Bayes’ Rule to
arrive at the posterior,

p(6 |y, ¥) ~ N(u X)
pu=TF, A"y
Y =T —TF,"A"1F,T

I' =diag(y)

—_ H~ — .. :
A~ = (61 + FoTF")™1 5 10* x 10* matrix inversion
e (Ui .



Using the likelihood and the prior, we invoke Bayes’ Rule to
arrive at the posterior,

p(6 |y, y) ~ NM(uX)

pu=TF, A"y
Y =T —TF,"A"1F,T

I' =diag(y)

) — (0.21 + FQFFQH)_l Inversion using Lanczos algorithm?
rle Ui .

[1] Seeger et al. MRM, 2010



Expectation-maximization algorithm? is used to estimate the
hyperparameters and the posterior iteratively,

Expectation step:
p=TF A"y
Y =T —TF,"A1F,T

Maximization step:
2
il
1—2;i/vi

rle [Uin .

Vi

[1] Wipf et al. IEEE Trans Signal Process, 2007



Expectation-maximization algorithm? is used to estimate the
hyperparameters and the posterior iteratively,

rle (Ui

(" Expectation step: )
u=[0F,"A™y
2 =[0-(D0F," A~ Fq[T}
Maximization step:
T | ;%
1 —2;/7i

[1] Wipf et al. IEEE Trans Signal Process, 2007



rle

Expectation-maximization algorithm? is used to estimate the
hyperparameters and the posterior iteratively,

Uk

Expectation step:

H

L

)X

= T'F,"A™}
=T —TF,"A"1F,T

"~

y

4 Maximization step:

\-

Yi =

‘2

1— /Vl

~N

[1] Wipf et al. IEEE Trans Signal Process, 2007



Expectation-maximization algorithm? is used to estimate the
hyperparameters and the posterior iteratively,

Expectation step:
p=TF A"y
Y =T —TF,"A1F,T

Maximization step:
2
il
1—2;i/vi

— for a single image

Vi

[1] Wipf et al. IEEE Trans Signal Process, 2007



Expectation-maximization algorithm? is used to estimate the
hyperparameters and the posterior iteratively,

Expectation step:
p=TF A"y
Y =T —TF,"A1F,T

Maximization step:

Vi = H‘ul’ .",MLHZ for L images jointly
© L—L-Xy/vi

[1] Wipf et al. IEEE Trans Signal Process, 2007



Expectation-maximization algorithm? is used to estimate the
hyperparameters and the posterior iteratively,

Expectation step:
p=TF A"y
Y =T —TF,"A1F,T

Maximization step:
H H 2 (Al Images are used to |
_ HHq, - fy estimate the variance:

B L—L- Zii/yi kContrasts are coupled)

Vi

.r;l-'..e-. Ukh 59 [1] Wipf et al. IEEE Trans Signal Process, 2007
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k-space, 100 % of Nyquist rate

Inverse FFT Error: 0 % RMSE




SparseMRI [N 9.4

k-space, 25 % of Nyquist rate
J

SparseMRI* Error: 9.4 % RMSE

lo.7

Ay A‘ﬁia: i
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[1] Lustig et al. MRM 2007 0




SparseMRI | o.4

M-FOCUSS } 3.2
k-space, 25 % of Nyquist rate

<~ M-FOCUSS Error: 3.2 % RMSE




SparseMRI [N 9.4

M-FOCUSS } 3.2 %
I ga I Joint Bayes | 2.3

k-space, 25 % of Nyquist rate

- -~ Joint BCS Error: 2.3 % RMSE




k-space
100 % of Nyquist rate

Inverse FFT

Error: 0 % RMSE
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SparseMR! | ©-4 %

k-space, 40 % of Nyquist rate

SparseMRIt

Error: 9.4 % RMSE

rle (Ui

[1] Lustig etal. MRM 2007 O



SparseMRI | 94 %

M-FOCUSS )|  51%

k-space, 40 % of Nyquist rate

M-FOCUSS

‘‘‘‘‘‘‘

Error: 5.1 % RMSE



SparseMRI | 94 %

M-FOCUSS |  51%
Joint Bayes | | 3.6 %

k-space, 40 % of Nyquist rate

Joint BCS

Error: 3.6 % RMSE

rle (Ui
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Demonstrated improved reconstruction quality for multi-
contrast imaging by exploiting similarity across contrasts

Proposed to use two methods for joint reconstruction:
M-FOCUSS: ¥4-%, regularization

Bayesian CS: common variance

rle [l s



SparseMRI*

M-FOCUSS

Bayesian CS

rle (Ui

method speed
1by1l ~ minutes
joint ~ minutes
joint ~ hours

69

quality

good

better

best

1] Lustig et al. MRM 2007



Bavesian CS computation speed

Current implementation: several hours / slice
Bottleneck: matrix inversion for covariance estimation

Initial results with sparse matrix inversion: several minutes?

[1] Cauley et al. ISMRM 2013 submitted



Bavesian CS computation speed

Initial results with sparse matrix inversion: several minutes

Extension to Parallel Imaging

Information from multiple receivers facilitate reconstruction from

undersampled data

44 11
» .

8-receivers each receiver has different spatial sensitivity



Bavesian CS computation speed

Initial results with sparse matrix inversion: several minutes

Extension to Parallel Imaging

Information from multiple receivers facilitate reconstruction from
undersampled data

Matrix inversion becomes ~ 10> x 10°, ongoing research



Bavesian CS computation speed

Initial results with sparse matrix inversion: several minutes

Extension to Parallel Imaging

Information from multiple receivers facilitate reconstruction from
undersampled data

Matrix inversion becomes ~ 10> x 10°, ongoing research

Multi-modal Imaging

Extend joint reconstruction to PET / MRI! etc.

rle (Ui

PET MRI 73 PET + MRI [1] Siemens Biograph mMR



Problems that were addressed, why they are worth solving

Contribution to the field

In particular,
Joint reconstruction of similar images
Accelerated Diffusion Spectrum Imaging
Quantifying tissue iron concentration

Lipid artifact suppression for Spectroscopic Imaging
Postpone to closed session

rle (Ui

74



excite

diffusion encoding

receljve

90°

time

RF pulses H

\4

\4

Gradient
| I
> » | » |
- | » - | ~
x . /J - /Lr
< P - - - P I\ I\
RF signal ; X An >
i Rephasing* v V V
/ Dephasmg’ : phasing®, V V
/ / I \
/ / I \ .
/ / | \ Signal
Spins are in / / AN )
phase " . . E \gﬁlr;iare in
Xy2 mxyl X mxyl r%xy me2

N

t,

ZERN I |

t,



excite diffusion encoding receive

time
90° 180°

RF pulses H H

\4

\4

Gradient

RF signal

v

I |

Spins are Dephasing Rephasing
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90° 180° RF signal

RF pulses H H A!\VAVAV[\U“ Na

v

v

L

X gradient

A 4

Y gradient — R

v

Z gradient

\4

Weight the diffusion in the desired direction of space using
magnetic gradients in 3-D

.r;l'-ne- m:ﬁ 77



RF signal

180
GHG

90°




RF signal

RF signal

RF signal

[ 90° 180
NG
90° 180°

DW < H G| H G|
data
90° 180°
el =
Non- 90° 180
DW data H U

RF signal

Ti?

TiY

—

Image intensity attenuation is dependent on water diffusion in each direction

rle (Ui
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Model the water diffusion as Gaussian:

|sotropic
tissue DTI

estimation

Fibrous :>

tissue

80



Model the water diffusion as Gaussian:

|sotropic
tissue DTI
estimation

Fibrous |:>

tissue
Tensor representation:

L. r’'D 1y
prob(move to r in time A) < exp | — m
D=

r ~10 um << 1 mm (voxel size)

81
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Model the water diffusion as Gaussian:

Isotropic
tissue

Fibrous
tissue

Tensor representation:

prob(r,A) < exp (—

r ~10 um

r'D=1r

4A

)

82

DTI ‘

estimation

:>’

90° & 180°

H 1 e

A

MR signal detected:
S(g) = S(0) - exp(—b-g' Dg)

b x G%6%(4—6/3)
g: unit vector along g



Model the water diffusion as Gaussian:

Isotropic ‘

tissue DTI
estimation
Fibrous :> ’

tissue

Tensor estimation:

S(g) = 5(0) -exp(—b-g§' DY)

rpa_ 1. (SO
g'Dg = ) 6 unknowns
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Model the water diffusion as Gaussian:

Isotropic ‘

tissue DTI
estimation
Fibrous :> ’

tissue

Tensor estimation:

S(g) = 5(0) -exp(—b-g§' DY)

rpa_ 1. (SO
g'Dg = ) 6 unknowns

At least 6 DWI + 1 non-DWI acquisitions are needed for DTI

84



Tensor visualization
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White matter:

anisotropic




Fiber tracking

|. Define “‘seed points”

2. Launch the tracking

&S & 0 ¢ ¢ e 0 _r £ 0 D D

= Connect similar directions

= Variety of software is available

- M:ﬁ 86



Fiber Tractography

Tensors

87

Tracts

»

A




Unlike tensor modeling, DSI offers a complete description of
water diffusion

And reveals complex distributions of fiber orientations

DSI requires full sampling of g-space (DTl needs =7 points)

rle [l "



Unlike tensor modeling, DSI offers a complete description of
water diffusion

And reveals complex distributions of fiber orientations

DSI requires full sampling of g-space (DTl needs =7 points)

Q-space of a single voxel Probability Density Function (pdf)
515 directions of a single voxel
DFT
#8000 »
y4
5
y
Sampling full g-space takes ~1 hour X



To reduce scan time, undersample g-space
Use sparsity prior to reconstruct the pdfs [1]

miny, [Fap — qll;* + a - [®pll, + B - TV(p)

wasanoes? 4N |

DET g-samples wavelet total variation
Undersampled g-space Probability Density Function (pdf)

of a single voxel of a single voxel

) CS
AR b 1 ) >
V4
r
y

X

1. Menzel Ml et al MRM 2011



Is pdf sparse in TV and wavelet?

Use a transform tailored for sparse representation of pdfs

Create dictionary from a training pdf dataset [P]

minpp > |lx;llo subjectto [P —DX||z° < e

K-SVDI[1] iterative algorithm was used to obtain [D]

Use dictionary to impose sparsity constraint

min||x||; suchthat FoDx = q

FOCUSSI2] was used to provide parameter free recon

e [ 1. Aharon M, et al IEEE Trans Signal Processing 2006
v 2. GorodnitskY IF, et al IEEE Trans Signal processing 1997



3 healthy volunteers, 3T Siemens Skyra
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradientsT, 64-chan head coil [1]

Y
Gmax =300 mT/m

Conventional= 45 mT/ m

90° <« 180°
H D 164\!\““\“[\ \Ar—»
A > T

b« G285%(4 —§/3)

T MAGNETOM Skyra CONNECTOM
system (Siemens Healthcare)

1. Keil B, et al MRM 2012
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]

Y
Gmax =300 mT/m

Conventional= 45 mT/ m

)
90° 180°

H |

A

bx G*6%(4—38/3)  Atfixed b, larger G — shorter &

1. Keil B, et al MRM 2012
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
| Y J

Gmax =300 mT/m

Conventional= 45 mT/ m

H D I_i(ﬂ [\I\AVAV
[ UUV

bx G*6%(4—38/3)  Atfixed b, larger G — shorter &

Shorter echo time, higher signal

1. Keil B, et al MRM 2012

rle [l o



3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
2.3 mm isotropic, bmax = 8000 s/mm?

1. Keil B, et al MRM 2012
rle (Ui !
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
2.3 mm isotropic, bmax = 8000 s/mm?
515 g-space points, 50 min scan time
Number of voxels = 96x96x57 = 500.000

1. Keil B, et al MRM 2012
rle (Ui !
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
2.3 mm isotropic, bmax = 8000 s/mm?
515 g-space points, 50 min scan time
Number of voxels = 96x96x57 = 500.000

One dictionary trained with data from each subject

A

12x12x12 = pdf grid size = 1728 rows

3172 columns :
1. Keil B, et al MRM 2012
rle Ui
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll
2.3 mm isotropic, bmax = 8000 s/mm?
515 g-space points, 50 min scan time
Number of voxels = 96x96x57 = 500.000

One dictionary trained with data from each subject

_________________________________________________ particular

= columns
—

rle [l o



3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
2.3 mm isotropic, bmax = 8000 s/mm?
515 g-space points, 50 min scan time
Number of voxels = 96x96x57 = 500.000

One dictionary trained with data from each subject
Recon experiments at accelerations R =3, 5 and 9

1. Keil B, et al MRM 2012
rle (Ui
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
2.3 mm isotropic, bmax = 8000 s/mm?
515 g-space points, 50 min scan time
Number of voxels = 96x96x57 = 500.000

One dictionary trained with data from each subject
Recon experiments at accelerations R =3, 5 and 9

Comparison of methods:

Wavelet + TV (Menzel et al [2])
L1-FOCUSS (apply L1 penalty on pdfs)
Dictionary-FOCUSS (proposed)

rle m]:—l 1. Keil B, et al MRM 2012

101 2. Menzel Ml et al MRM 2011



3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
2.3 mm isotropic, bmax = 8000 s/mm?
515 g-space points, 50 min scan time
Number of voxels = 96x96x57 = 500.000

10 average collected at 5 g-space points
Low-noise data, serve as ground truth

1. Keil B, et al MRM 2012
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3 healthy volunteers, 3T Siemens Skyra
Connectom gradients, 64-chan head coll [1]
2.3 mm isotropic, bmax = 8000 s/mm?
515 g-space points, 50 min scan time
Number of voxels = 96x96x57 = 500.000

10 average collected at 5 g-space points
Low-noise data, serve as ground truth

Tractography comparison:

Fully-sampled vs. R = 3 Dictionary-FOCUSS

Fractional Anisotropy compared for 18 major fiber bundles

1. Keil B, et al MRM 2012
rle [Uin 103 2. Menzel Ml et al MRM 2011



Subject A, pdf reconstruction error Slice 40

Wavelet+TV  £€1-FOCUSS

20%

Acceleration
R=3

0%
15.8% RMSE  15.0% RMSE

Wav+TV @ R=3 | 15.8% error |
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Subject A, pdf reconstruction error Slice 40

Dictionary-FOCUSS

Wavelet+TV  £,-FOCUSS Trained on Trained on Trained on
! subject A subject B subject C

20%

20%

Acceleratlon

0% 0%

15.8% RMSE  15.0% RMSE 7.8% RMSE 7.8% RMSE  8.2% RMSE

Wav+TV @ R=3 |  15.8% error |

Dictionary @ R=3 I- error
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Subject A, pdf reconstruction error Slice 40

Dictionary-FOCUSS

Wavelet+TV  £,-FOCUSS Trained on  Trained on Trained on
! subject A subject B subject C
20% 20%
I Acceleration
R=3
0% 0%
15.8% RMSE  15.0% RMSE 7.8% RMSE 7.8% RMSE  8.2% RMSE

20%

Acceleration
R=5

8.9% RMSE 8.9% RMSE 9.3% RMSE

0%

Wav+TV @ R=3 |  15.8% error |

Dictionary @ R=3 l- error

Dictionary @ R=5 ‘ 8.9%]error
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Subject A, pdf reconstruction error Slice 40

Dictionary-FOCUSS

Wavelet+TV  £,-FOCUSS Trained on Trained on Trained on
! subject A subject B subject C

; ] 20%
I _ Acceleration

. 3 ) _ R=3
0% i % e I 0%

15.8% RMSE  15.0% RMSE 7.8% RMSE 7.8% RMSE  8.2% RMSE

20%
Acceleration
R=5
0%

8.9% RMSE 8.9% RMSE 9.3% RMSE

Wav+TV @ R=3 |  15.8% error |

—_ Acceleration
Dictionary @ R=3 error
78% clera
Dictionary @ R=5 ‘ 8.9%]error
0%

Dictionary @ R=9 10.0% error
107 10.0% RMSE  10.0% RMSE  10.4% RMSE




Subject A, pdf reconstruction error Slice 40

Dictionary-FOCUSS

Wavelet+TV  £,-FOCUSS Trained on Trained on Trained on
1 subject A subject B subject C

0%
15.8% RMSE  15.0% RMSE 7.8% RMSE  8.2% RMSE

Acceleration
R=5

8.9% RMSE 9.3% RMSE
Wav+TV @ R=3 | 15.8% error |

Dictionary @ R=3 I- error

Dictionary @ R=5 ’ 8.9%]error

e e e A 0%
Dictionary @ R=9 10.0% error ’
108 10.0% RMSE  10.0% RMSE 10.4% RMSE




—Dictionary-FOCUSS
—Wavelet + TV
—L1-FOCUSS

0
o

(o))
o

% RMSE in g-space
N £
o o

o

—

Missing g-space directions increasing |q|

g-space reconstructions at q=[5,0,0]

Wavelet+TV £,-FOCUSS Dict-FOCUSS Fully-sampled

.I_,.*"‘I'“"T'x

r 4

‘1

|...]': r
1 average
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—Dictionary-FOCUSS
—Wavelet + TV
—L1-FOCUSS

0
o

(o))
o

% RMSE in g-space
N £
o o

o

—

Missing g-space directions increasing |q|

g-space reconstructions at q=[5,0,0]

Wavelet+TV £,-FOCUSS Dict-FOCUSS Fully-sampled

.I_,*"‘I'"'T'x

by T
10 average

-El-'ne- M:ﬁ 110



—Dictionary-FOCUSS
—Wavelet + TV
—L1-FOCUSS

0

% RMSE in g-space

q=[5,0,0]

—

Missing g-space directions increasing |q|

g-space reconstructions at q=[5,0,0]

Wavelet+TV £,-FOCUSS Dict-FOCUSS Fully-sampled

_'!‘ 1 .: ':-. E-.-.. .-"l II-_T = fy ._-.,-
poor performance™ ™ .
\ Y J performance 10 average

same ¢, norm as 10 average
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SNR drops substantially at the outer g-space

RMSE computed relative to 1 average fully-sampled data
Includes noise and recon error

To isolate recon error, collected 10 avg on 5 g-space points

rle (Ui
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SNR drops substantially at the outer g-space

RMSE computed relative to 1 average fully-sampled data
Includes noise and recon error

1 avg fully-sampled 10 avg fully-sampled

_I:l_.s_ ﬂ]ﬁ 113



SNR drops substantially at the outer g-space

RMSE computed relative to 1 average fully-sampled data
Includes noise and recon error

100+

-e-Dictionary-FOCUSS vs. 10 avg

80} [===(Fully-sampled 1 avg) vs. 10 avg
v L1-FOCUSS vs. 10 avg

60 A \Wavelet+TV vs. 10 avg

Lower RMSE than
acquired data

o
O
@
j= R
-‘.:J
or

=

w

W

=

o

&

=2

Denoising effect [1]

[0,2,-1] [0,0,3] [0,4,0] [5,0,0]
g-space location
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FMIN

Tractography solutions for subject A

Fully-sa

mp

'Ied data

o

A L "/I “ s
Dictionary-FOCUSS recon
with 3-fold acceleration
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Tractography solutions for subject A

FMAJ

FuIIy-sampIed data Dictionar -FOCUSS recon
with 3-fold acceleration

Average Fractional Anisotropy

for 18 labeled white-matter pathways [1]

!.:_I
=

Average FA_

ro

_Rl
:RS

1. Yendiki A et al
Front Neuroinform 2011




Tractography solutions for subject A

Fully- sampled data Dictionar -FOCUSS recon
with 3-fold acceleration

Mean FA error = 3%

!.:_I
=

Average FA

_Rl
:RB

1. Yendiki A et al
Front Neuroinform 2011




Up to 2-times RMSE reduction in pdf domain
Dictionary-FOCUSS (proposed) vs. Wavelet+TV [1]

-r;l-'ne- M:ﬁ 118
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Up to 2-times RMSE reduction in pdf domain
Dictionary-FOCUSS (proposed) vs. Wavelet+TV [1]

3-fold accelerated Dict-FOCUSS = Fully-sampled data
Low-noise 10 average data validation

Tractography comparison

-r;l-'ne- M:ﬁ 119
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Up to 2-times RMSE reduction in pdf domain
Dictionary-FOCUSS (proposed) vs. Wavelet+TV [1]

3-fold accelerated Dict-FOCUSS = Fully-sampled data

Dictionary from single slice seems to generalizes to other slices
and to other subjects

-r;l-'ne- M:ﬁ 120

1. Menzel Ml et al MRM 2011



Voxel-by-voxel recon
Dictionary-FOCUSS: 12 sec/ voxel

Wavelet+TV: 27 sec / voxel In Matlab
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Voxel-by-voxel recon
Dictionary-FOCUSS: 12 sec/ voxel

Wavelet+TV: 27 sec / voxel In Matlab

Full-brain processing for 10° voxels: DAYS of computation

Addressed next
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Voxel-by-voxel recon
Dictionary-FOCUSS: 12 sec/ voxel

Wavelet+TV: 27 sec / voxel In Matlab

Full-brain processing for 10° voxels: DAYS of computation

Do dictionaries generalize across healthy vs. patient populations?

across different age groups?
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Two proposals that are computationally 1000-fold faster with
Image quality similar to Dictionary-FOCUSS:
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Two proposals that are computationally 1000-fold faster with
Image quality similar to Dictionary-FOCUSS:

PINV:
Uses a dictionary trained with K-SVD

Rather than ¢, applies ¢, regularization to dictionary coefficients

Admits closed-form solution (Regularized Pseudoinverse (PINV))

-r;l-'ne- M:ﬁ 125



Two proposals that are computationally 1000-fold faster with
Image quality similar to Dictionary-FOCUSS:

PINV:
Uses a dictionary trained with K-SVD

Rather than ¢, applies ¢, regularization to dictionary coefficients

Admits closed-form solution (Regularized Pseudoinverse (PINV))

PCA:

Obtain a low-dimensional representation using training data

Retain maximum variance using Principal Component Analysis (PCA)

Admits closed-form solution, no need for K-SVD
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Dictionary-FOCUSS iteratively solves

min||x||; suchthat FoDx = q

-r;l-'ne- M:ﬁ 127



Dictionary-FOCUSS iteratively solves

min||x||; suchthat FoDx = q

Instead, consider

. 2 2
min ||FoDx — ql|,” + 21 - ||x]|,
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Dictionary-FOCUSS iteratively solves

min||x||; suchthat FoDx = q

Instead, consider

. 2 2
min ||FoDx — ql|,” + 21 - ||x]|,

Solution: ¥ = ((FoD)H#F,D + A1)~ 1(F,D)Hq
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Dictionary-FOCUSS iteratively solves

min||x||; suchthat FoDx = q

Instead, consider

. 2
min ||FoDx — q||22 + A - ||x]l,
Solution: X = ((FoD)*FyuD + A~} (FuD) ¢

Singular Value Decomposition: FqD = UXV#
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Dictionary-FOCUSS iteratively solves

min||x||; suchthat FoDx = q

Instead, consider

. 2
min ||FoDx — q||22 + A - ||x]l,
Solution: X = ((FoD)*FyuD + A~} (FuD) ¢

) F,D = USV¥
¥ = VEtUHg ¥t =T + D"z

compute once
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PCA: approximates data points using a linear combo of them
to retain the maximum variance in the dataset
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PCA: approximates data points using a linear combo of them
to retain the maximum variance in the dataset

Start with a training set of pdfs P
Subtract the mean, diagonalize the covariance matrix:

Z=P—Pnean
777 = QAQ”
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PCA: approximates data points using a linear combo of them
to retain the maximum variance in the dataset

Start with a training set of pdfs P
Subtract the mean, diagonalize the covariance matrix:
Z =P — DPnean
Z7" = QAQ"

Pick the first T columns of Q corresponding to largest eigvals: Q

pca = ITJ"I(p — Pmean)

v

T - dimensional
pca coefficients
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PCA: approximates data points using a linear combo of them
to retain the maximum variance in the dataset

Start with a training set of pdfs P
Subtract the mean, diagonalize the covariance matrix:

LZ=P—Dnean
777 = QAQ”
Pick the first T columns of Q corresponding to largest eigvals: Q

pca = ITJ"I(p — Pmean)

The location of pca in the pdf space,

pr = Qrpca + Prean
-El-‘r?- m:ﬁ 135



PCA: approximates data points using a linear combo of them
to retain the maximum variance in the dataset

Least-squares approximation in T - dimensions,

min ||Fopr — qll5°
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PCA: approximates data points using a linear combo of them
to retain the maximum variance in the dataset

Least-squares approximation in T - dimensions,

min ||Fopr — qll5°

In PCA coordinates,

minpca IFaQrpca — (q — Fﬂpmean)”%
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PCA: approximates data points using a linear combo of them
to retain the maximum variance in the dataset

Least-squares approximation in T - dimensions,
: 2
min ||[Fopr — qll>

In PCA coordinates,

minpca IFaQrpca — (q — Fﬂpmean)”%

Closed-form solution:

pca = pinv(FqaQr)(q — FaPmean)
| |

compute once

-r;l-'ne- M:ﬁ 138



PINV: selection of A

) 2
min ||[FoDx — q||,> +A| [|x]l,
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PINV: selection of A

) 2
min ||[FoDx — q||,> +A| [|x]l,

PCA: selection of PCA dimension T in Qr

minpca ”FQ@ pca — (CI — Fﬂpmean)”%
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PINV: selection of A

) 2
min ||[FoDx — q||,> +A| [|x]l,

PCA: selection of PCA dimension T in Qr

minpca ”FQ@ pca — (CI — Fﬂpmean)”%

Fully-sampled pdf training dataset P was used to generate
the dictionary D and the eigenvectors Q

Find A and T that yields the lowest reconstruction error on P
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Subject A, pdf reconstruction error Slice 40

Wavelet+TV  £€1-FOCUSS Dict-FOCUSS PINV

I : Acceleratlon

0%
15.8% RMSE  15.0% RMSE 7.8% RMSE  8.1% RMSE 8.7% RMSE

1190 min 26 min  Recon Time 530 min 0.6 min 0.4 min




Subject A, pdf reconstruction error Slice 40

Wavelet+TV  €1-FOCUSS Dict-FOCUSS PINV

S =4k 20%
I . Acceleration
i . : R=3
o j 1 : ¥ o ! o O%

0%
15.8% RMSE  15.0% RMSE 7.8% RMSE  8.1% RMSE 8.7% RMSE

1190 min 26 min  Recon Time 530 min 0.6 min 0.4 min

20%
Acceleration
R=5
0%

8.9% RMSE  8.9% RMSE 9.6% RMSE




Subject A, pdf reconstruction error Slice 40

Wavelet+TV  €1-FOCUSS Dict-FOCUSS PINV

5, e 20%
I . Acceleration

. 3 ) _ R=3
0%  alg e I 0%

15.8% RMSE  15.0% RMSE 7.8% RMSE  8.1% RMSE 8.7% RMSE
1190 min 26 min  Recon Time 530 min 0.6 min 0.4 min

20%
Acceleration
R=5
0%

8.9% RMSE  8.9% RMSE 9.6% RMSE

20%
Acceleration
R=9
0%

14410.0% RMSE ~ 10.2% RMSE  11.2% RMSE
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Subject A, recon error across slices

" [_Dictionary FOCUSS|
--PINV

(

Dictionary-
FOCUSS
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Comparison to Low-Noise 10 avg Data

- (Fully-sampled 1avg) vs. 10avg
~Dictionary-FOCUSS vs. 10avg
= Tikhonov vs. 10avg

«»PCA vs. 10avg

e Wavelet+TV vs. 10avg

[0,2,-1]

q—spfigéol’gcl,ation
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Comparison to Low-Noise 10 avg Data

—_
(o]
(=)

- (Fully-sampled 1avg) vs. 10avg
~Dictionary-FOCUSS vs. 10avg
= Tikhonov vs. 10avg

«»PCA vs. 10avg

e Wavelet+TV vs. 10avg

o0
(=)

o)
(=)

RMSE in g-space
N
o

[0,4,0]

[0,2-1] q_sp;igéol’g’:lation

magnified

—
(%))

—
o

RMSE in g-space

All dictionary recons have lower
RMSE than acquired data

|
0,2,-1 998
[ & ] —540’6 I’oéation




Problems that were addressed, why they are worth solving

Contribution to the field

In particular,
Joint reconstruction of similar images
Accelerated Diffusion Spectrum Imaging
Quantifying tissue iron concentration

Lipid artifact suppression for Spectroscopic Imaging
Postpone to closed session

rle (Ui
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Susceptibility y : degree of magnetization of a material when
placed in a magnetic field
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Susceptibility y : degree of magnetization of a material when
placed in a magnetic field

Xwater — =9 ppm Xiron =~ 0
x=0
'\I magnetic
moment
Diamagnetic Paramagnetic
vy < 0 v > 0
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Susceptibility y : degree of magnetization of a material when
placed in a magnetic field

Xwater = =9 ppm Xiron >> O
x=0
Susceptibility of brain tissue is = -9 ppm

Tissues with increased iron deposition are relatively
paramagnetic — y is more positive

1 Halgren & Sourander, J. Neurochem, 1960



Susceptibility y : degree of magnetization of a material when
placed in a magnetic field

Ywater — -9 PpPm Xiron =~ 0

x=0

Susceptibility of brain tissue is = -9 ppm

Tissues with increased iron deposition are relatively
paramagnetic — y is more positive

EXxcessive iron concentration occurs in a variety of
degenerative diseasest,

e.g. Alzheimer’s, multiple sclerosis, Parkinson’s

.I:l_.ne_ M:ﬁ 152
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Susceptibility y : degree of magnetization of a material when
placed in a magnetic field

Ywater — -9 PpPm Xiron =~ 0

x=0

Variations in tissue susceptibility affects the magnetic field

Ax —> magnetic field perturbation
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Susceptibility y : degree of magnetization of a material when
placed in a magnetic field

Xwater = =9 ppm Xiron == 0
x=0
Variations in tissue susceptibility affects the magnetic field

Field perturbation causes a change in MR signal phase

Ay — magnetic field perturbation — A@

- A

estimate measured
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Quantitative Susceptibility Mapping (QSM) aims to quantify
tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement?!
Estimation of venous blood oxygenation?
Quantification of tissue iron concentration®

1 Duyn JH et al., PNAS 2007 2 FanAP etal.,ISMRM 2010 S LiuT etal., ISMRM 2010



Quantitative Susceptibility Mapping (QSM) aims to quantify
tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement?!
Estimation of venous blood oxygenation?
Quantification of tissue iron concentration®

Estimation of the susceptibility map y from the unwrapped
phase ¢ involves solving an inverse problem,

8 = F 1DFy

F: Discrete Fourier Transform

D: susceptibility kernel

6 = L : normalized field map

y - TE - B,

1 Duyn JH et al., PNAS 2007 2 FanAP etal.,ISMRM 2010 S LiuT etal., ISMRM 2010



Quantitative Susceptibility Mapping (QSM) aims to quantify
tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement?!
Estimation of venous blood oxygenation?
Quantification of tissue iron concentration®

Estimation of the susceptibility map y from the unwrapped
phase ¢ involves solving an inverse problem,

B=r"1DF@

1 Duyn JH et al., PNAS 2007 2 FanAP etal.,ISMRM 2010 S LiuT etal., ISMRM 2010



Quantitative Susceptibility Mapping (QSM) aims to quantify
tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement?!
Estimation of venous blood oxygenation?
Quantification of tissue iron concentration®

Estimation of the susceptibility map y from the unwrapped
phase ¢ involves solving an inverse problem, § = F~1DFy

The inversion is made difficult by |D|
zeros on a conical surface in
susceptibility kernel D

1 k,°

D=---2
3 k2

1 Duyn JH et al.,, PNAS 2007 2FanAPetal, ISMRM 2010 3LiuT etal., ISMRM 2010



Quantitative Susceptibility Mapping (QSM) aims to quantify
tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement?!
Estimation of venous blood oxygenation?
Quantification of tissue iron concentration®

Estimation of the susceptibility map y from the unwrapped
phase ¢ involves solving an inverse problem, § = F~1DFy

D

Undersampling is due to physics

Not in our control

1 Duyn JH et al.,, PNAS 2007 2FanAPetal, ISMRM 2010 3LiuT etal., ISMRM 2010



Regularized Inversion for QSM
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Regularized Inversion for QSM
log|D-|

8 = F"1DFy

= Solving for y by convolving with the inverse of D is not possible,
as it diverges along the magic angle
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log|D-|

8 = F<=DFy

[diverges to oo ]

Solving for y by convolving with the inverse of D is not possible,
as it diverges along the magic angle

Use inverse problem formulation, apply regularization

_I:l_.g_ ﬂ]ﬁ 162



Several processing steps are required to obtain the tissue phase




Phase Processing

= Several processing steps are required to obtain the tissue phase

.. Mask out the skull

Using FSL Brain Extraction Tool?

164 1 Smith SM, Hum. Brain Mapp. 2002



Phase Processing

= Several processing steps are required to obtain the tissue phase

.. Mask out the skull
1. Unwrap the phase

Using FSL PRELUDE?

165 1 Jenkinson M, MRM 2003



Several processing steps are required to obtain the tissue phase

Mask out the skull
Unwrap the phase

Remove background phase

Phase accrued due to air-tissue interfaces needs to be removed

This background component is ~10x larger than tissue phase
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Phase Processing

= Several processing steps are required to obtain the tissue phase

.. Mask out the skull
1. Unwrap the phase

1. Remove background phase

Phase accrued due to air-tissue interfaces needs to be removed

This background component is ~10x larger than tissue phase

initial phase background phasel

1 LiuT, NMR in Biomedicine 2011




Phase Processing

= Several processing steps are required to obtain the tissue phase

.. Mask out the skull
1. Unwrap the phase

1. Remove background phase

Phase accrued due to air-tissue interfaces needs to be removed

This background component is ~10x larger than tissue phase

initial phase background phase tissue phase §

-0.8 ppm 0.8 ppm -0.8 ppm e



Phase Processing

= Several processing steps are required to obtain the tissue phase

.. Mask out the skull
1. Unwrap the phase

1. Remove background phase

Phase accrued due to air-tissue interfaces needs to be removed

This background component is ~10x larger than tissue phase

tissue phase §

= Now we can solve for y from tissue phase &

I e )] %

169 p Ul 0.1 ppm|



We seek the susceptibility map that matches the observed
tissue phase,

Find y suchthat 6§ = F~1DFy

Susceptibility values are tied to the magnetic properties of the

underlying tissues; hence they vary smoothly within
anatomical boundaries.

rle (Ui
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We seek the susceptibility map that matches the observed
tissue phase,

Find y suchthat 6§ = F~1DFy

Susceptibility values are tied to the magnetic properties of the
underlying tissues; hence they vary smoothly within
anatomical boundaries.

Model the susceptibility map to be approximately piece-wise
constant,

Invoke sparsity inducing L1 norm on spatial gradients of y

rle (Ui
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We solve for the susceptibility distribution with a convex
program,

Xtissue = argminXHS — F_IDFXHZZ + A lGxlly
\ J \ J

data consistency £, over gradients
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We solve for the susceptibility distribution with a convex
program,

Xtissue = argminXHS — F_IDFXHZZ + A lGxlly
\ J \ J

data consistency £, over gradients

Here, A serves as a regularization parameter that adjusts the
smoothness of the solution

rle (Ui
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We used QSM to test the hypothesis that,

iIron deposition in striatal and brain stem nuclel is
greater in older than younger adults

Subjects:
11 younger adults (age = 24.0 £ 2.5) and
12 elderly adults (age =74.4 £7.6)

Data:
Susceptibility Weighted 3D SPGR at1.5T

rle (Ui
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/ Average OSM for the Young Average QSM for the Elderly\
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/ Average OSM for the Young Average QSM for the Elderly\

Striatal ROls Brain Stem ROls
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/ Average QSM for the Young Average QSM for the Elderly\
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QSM results correlate well with published postmortem
resultst, with Rho =0.881, p =0.0198

L1-QSM vs. Postmortem
Rho=.881, p=.0198

% globus pallidus

putamen
T ! I red nucleus
caudate | nlgra

J_dentate n J_
IE-I thalamus
—

10 15 20 25
Postmortem

.El-'..e-. ﬂ]]:_l 178 1 Hallgren, B. and Sourander, P. 1958, Journal of Neurochem



Field-Dependent Relaxation Rate Increase (FDRI)?! is another
iIron quantification method that requires data acquisition at
two different field strengths.

QSM is strongly correlated with FDRI results, with
Rho =0.976, p = 0.0098

L1-QSM vs. FDRI (N=23)
Rho=.976, p=.0098

-|'globus pallidus

putamen

WH
red nucleus
caudate .

‘ ‘I s nigra

—H
J_denta n

TT
H—I!—I—| thalamus

L
frontal
wm

1 Bartzokis, G. et al., 1993, Magn Res Med



QSM vs. FDRI

QSM requires data acquisition at a single field strength, and
has much higher spatial resolution, enabling iron
guantification in vessels.

Younqg Group Elderly Group

/(a) FDRI /“
0s /T !
>b) 5 -

0s T 0.005s /T




Proposed algorithms that

Provide faster data acquisition in structural imaging and
Diffusion Spectrum Imaging

Allow guantitative mapping of tissue susceptibility

Suppress lipid artifacts in MR spectroscopic imaging
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Proposed algorithms that

Provide faster data acquisition in structural imaging and
Diffusion Spectrum Imaging

Allow guantitative mapping of tissue susceptibility

Suppress lipid artifacts in MR spectroscopic imaging

Thank you all for coming!
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Journal:

Multi-contrast Reconstruction with Bayesian Compressed Sensing
B. Bilgic, V.K. Goyal, E. Adalsteinsson

Magnetic Resonance in Medicine, 2011

Conference Abstract:

Joint Bayesian Compressed Sensing for Multi-contrast
Reconstruction

B. Bilgic, V.K. Goyal, E. Adalsteinsson
ISMRM 2011, oral presentation

Joint Bayesian Compressed Sensing with Prior Estimate
B. Bilgic, E. Adalsteinsson
ISMRM 2012, oral presentation

184



Journal:

Accelerated Diffusion Spectrum Imaging with Compressed Sensing using
Adaptive Dictionaries

B. Bilgic, K. Setsompop, J. Cohen-Adad, A. Yendiki, L.L. Wald, E. Adalsteinsson
Magnetic Resonance in Medicine, 2012

Accelerated Diffusion Spectrum Imaging with Compressed Sensing using
Adaptive Dictionaries

B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson
IEEE Trans on Medical Imaging, submitted

Conference Paper:
Accelerated Diffusion Spectrum Imaging with Compressed Sensing using
Adaptive Dictionaries

B. Bilgic, K. Setsompop, J. Cohen-Adad, V. Wedeen, L. Wald, E. Adalsteinsson
MICCAI 2012, oral presentation

Conference Abstract:

Fast DSI Reconstruction with Trained Dictionaries

B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson
ISMRM 2013, submitted

185



Journal:

MRI Estimates of Brain Iron Concentration in Normal Aging Using
Quantitative Susceptibility Mapping

B. Bilgic, A. Pfefferbaum, T. Rohlfing, E.V. Sullivan, E. Adalsteinsson
Neurolmage, 2012

Conference Abstract:

Quantitative Susceptibility Map Reconstruction with Magnitude
Prior

B. Bilgic, A.P. Fan, E. Adalsteinsson
ISMRM 2011, oral presentation

Regularized QSM in Seconds
B. Bilgic, I. Chatnuntawech, A.P. Fan, E. Adalsteinsson
ISMRM 2013, submitted

186



Journal:

Lipid Suppression in CSI with Spatial Priors and
Highly Undersampled Peripheral k-space

B. Bilgic, B. Gagoski, T. Kok, E. Adalsteinsson

Magnetic Resonance in Medicine, 2012

Conference Abstract:

Lipid Suppression in CSI with Highly-Undersampled
Peripheral k-Space and Spatial Priors

B. Bilgic, B. Gagoski, E. Adalsteinsson
ISMRM 2012, poster presentation

187



AT MIT

Lipid artifact suppression for

Spectroscopic Imaging



MRI and MRSI

= Magnetic Resonance (MR) Imaging
enables spatial encoding of the human tissue

= Data are collected in (kx,ky,kz)

LE

Fourier Space

kx
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Magnetic Resonance (MR) Imaging
enables spatial encoding of the human tissue

MR Spectroscopic Imaging (MRSI) or Chemical Shift Imaging
(CSI) provides spatial and spectral encoding

brain metabolites
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Magnetic Resonance (MR) Imaging
enables spatial encoding of the human tissue

MR Spectroscopic Imaging (MRSI) or Chemical Shift Imaging
(CSI) provides spatial and spectral encoding
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Magnetic Resonance (MR) Imaging
enables spatial encoding of the human tissue

MR Spectroscopic Imaging (MRSI) or Chemical Shift Imaging
(CSI) provides spatial and spectral encoding
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-!' i lipids
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MRI SNR = Vize X /Tacq
@ water
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(=50M)
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Magnetic Resonance (MR) Imaging
enables spatial encoding of the human tissue

MR Spectroscopic Imaging (MRSI) or Chemical Shift Imaging
(CSI) provides spatial and spectral encoding

MRI SNR = Vize X Tacq

- R .
brain metabolites
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Magnetic Resonance (MR) Imaging
enables spatial encoding of the human tissue

MR Spectroscopic Imaging (MRSI) or Chemical Shift Imaging
(CSI) provides spatial and spectral encoding

MRI SNR = Vize X Tacq

NAA

brain metabolites

=)
af

water suppression + lipid suppression
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Voxel sizes in spectroscopy are typically large ~1cm?3
This aims to increase the SNR of brain metabolites

Encoding space and resonance frequency within reasonable
scan time also limits the spatial resolution

rle (Ui
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Voxel sizes in spectroscopy are typically large ~1cm?3
This aims to increase the SNR of brain metabolites

Encoding space and resonance frequency within reasonable
scan time also limits the spatial resolution

Poor spatial resolution causes subcutaneous lipids to
contaminate the metabolites inside the brain

lipid layer low resolution lipid ringing

rle (Ui
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Excites a rectangular field-of-view (FOV) inside the brain
Peripheral brain regions cannot be mapped

z g RXIX
BB o h
WP . S _
IOSTS - e - A excited FOV
& F 4 %6
> /4 SESe
DR o - :
@ S i brain RO

NAA map

excited FOV
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Excites a rectangular FOV inside the brain
Peripheral brain regions cannot be mapped

Obtain center k-space with multiple avg for metabolites,
high k-space with 1 avg for lipids which have strong signal

High frequency lipid information reduces ringing

Lipid Maps

multi avg for —
metabolites
at Nyquist rate

1 avg for lipid

- : at Nyquist rate — P

center k-space
rle (Ui

19
1Hu et al. IEEE T.Meé.lm. 1991 2 Metzger et al. MRI 1999 3 Sarkar et al. MRI 2002



Excites a rectangular FOV inside the brain
Peripheral brain regions cannot be mapped
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Obtain center k-space with multiple avg for metabolites,
high k-space with 1 avg for lipids which have strong signal

High frequency lipid information reduces ringing

Lipid and metabolite spectra are approximately orthogonal

Inside the brain, inner product of metabolites and lipids should
be small
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Consider a metabolite spectra (taken from the OVS scan)
and a lipid spectra (from non-lipid suppressed acquisition)

== metabolite

== lipid

Amplitude

3 2.5 2 15 1
Resonance Frequency (ppm)
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Consider a metabolite spectra (taken from the OVS scan)
and a lipid spectra (from non-lipid suppressed acquisition)

== metabolite

== lipid

Amplitude

™ iy
2 1.5 1
Resonance Frequency (ppm)
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Consider a metabolite spectra (taken from the OVS scan)
and a lipid spectra (from non-lipid suppressed acquisition)

== metabolite
== lipid

Amplitude
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Consider a metabolite spectra (taken from the OVS scan)
and a lipid spectra (from non-lipid suppressed acquisition)

metabolite
lipid

Amplitude

Compute the projection of metabolite signal onto the lipid
spectra and the orthogonal component

metabolite
metabolite lipid

meta
et = T lipidll?

- lipid

lipid

0
.ri'ne- il Mta” 203
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Consider a metabolite spectra (taken from the OVS scan)
and a lipid spectra (from non-lipid suppressed acquisition)

x10°
== metabolite
meta
— meta"

meta
|| ||||2 _ 75%

lImeta, ||

Amplitude

55
Resonance Frequency (ppm)

Compute the projection of metabolite signal onto the lipid
spectra and the orthogonal component

The projection is negligibly small, confirming the orthogonality

approximation
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In addition to multiple avg low-resolution CSI acquisition,
obtain 1-2 avg high-resolution lipid data

Apply iterative lipid-basis penalty
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In addition to multiple avg low-resolution CSI acquisition,
obtain 1-2 avg high-resolution lipid data

Apply iterative lipid-basis penalty

/Form high-resolution, masked lipid image x;;y;q4 \

— -1
X1ipid = MiipiaFrignYnign

Mjipiq- lipid mask
Yhign - high-res k-space data
Frign : high-res DFT operator
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In addition to multiple avg low-resolution CSI acquisition,
obtain 1-2 avg high-resolution lipid data

Apply iterative lipid-basis penalty

/Form high-resolution, masked lipid image x;;y;q4 \

— -1
X1ipid = MiipiaFrignYnign

Compute the dual-density image (combine x;;,,;4 with low-res CSlI)

Xaual = Frign{(Fnigh — Fiow)X1ipia + Yiow)

Yiow - lOow-res k-space data
F;,,, : low-res DFT operator
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In addition to multiple avg low-resolution CSI acquisition,
obtain 1-2 avg high-resolution lipid data

Apply iterative lipid-basis penalty

/Form high-resolution, masked lipid image x;;y;q4 \

— -1
Xiipid = MyipiaFrignYnign
g

Compute the dual-density image (combine x;;,,;4 with low-res CSlI)

Xaual = Frign{(Fnigh — Fiow)X1ipia + Yiow)

Make a lipid-basis matrix whose columns are lipid spectra in x,4;
and enforce orthogonality between metabolites and lipids

Xpasic = argminy ”Fhighx — ydual”j‘l'}\ - ZieMbmin ”LdualH xi”1

Liyua - lipid-basis matrix /
g Hin My,,qin - brain mask zos



Lipid layer is ~sparse in space and in frequency

lipid layer lipid spectra
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Lipid layer is ~sparse in space and in frequency

In addition to acquiring just 1-2 averages, substantially
undersample the high-resolution scan to estimate lipid layer

multi avg for
metabolites
at Nyquist rate

1 avg for lipid

k-space sampling 10-fold undersampling
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Lipid layer is ~sparse in space and in frequency

In addition to acquiring just 1-2 averages, substantially
undersample the high-resolution scan to estimate lipid layer

Compute the lipid image with FOCUSS? algorithm that imposes
£, penalty in space and frequency:

~N

( For iteration numbert =1, ...T,
t g t 1/2
W = diag (|xj| )
q' = argmingllqll5 suchthat MqgFp;;nWiq = ypign

t+1 — Wtqgt
\_ g 1 .
M, : k-space undersampling mask

xT*1: CS recon for high-res lipid image
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No lipid suppression, TE = 50 ms

Voxel size = 0.16 cc, 20 averages, in 33 min

CHESS for water suppression, PRESS-box excites whole FOV
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No lipid suppression, TE =50 ms
Voxel size = 0.16 cc, 20 averages, in 33 min . =

CHESS for water suppression, PRESS-box excites whole FOV

Voxel size = 0.5 cc, 20 averages, in 11 min

OVS bands null the lipid signals
PRESS-box excites 9x9 cm? FOV inside the brain
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(a) Gold standard
20 avgpign: Rpign=1

15 dB
To serve as gold standard, lipid-basis penalty
IS applied to 20 average, 0.16 cc data
-35 dB
20 avg for
metabolites

at Nyquist rate

20 avg for lipid

rle Ui k-space sampling &t Nyauist rate



(a) Gold standard (b) Proposed 1

—
-

Proposed 1 : high-res k-space with 2 avg

20 avg for
metabolites
at Nyquist rate

2 avq for lipid
at Nyquist rate

rle (Ui

k-space sampling

15 dB

-35dB



(a) Gold standard (b) Proposed 1 (c) Proposed 2

20 avQyigh Rpign=1 2 aVGpigh, Ruign=1 2 aVQpigh, Rhign=10
. i —— 1 .|

—
-

L=
n

15 dB
Proposed 2 : high-res k-space with 2 avg
10-fold undersampling
-35 dB
20 avg for
metabolites

at Nyquist rate

2 avq for lipid

rle [l k-space sampling  10-fold undersampling



(a) Gold standard (b) Proposed 1 (c) Proposed 2

20 avgpigh: Rpign=1 . 2 aVQhighs Rhig_hzl i 2 AVGhigh, Rpigh=10 ~

15 dB

Lipid-basis applied to 0.5cc data e g
20 avg for

metabolites
at Nyquist rate

(d) Lipid-basis penalty

rle U k-space sampling



Lipid Maps at TE = 50 ms

(a) Gold standard (b) Proposed 1 (c) Proposed 2
20 avghigh, Rr..”_gh:].

2 @VQhigh, Rpigh=1
r E - o

15 dB

-35dB

(d) Lipid-basis penalty  (e) Dual-density
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(a) Gold standard (b) Proposed 1 (c) Proposed 2

20 avgpigh: Rpign=1 2 aVQhighs Rhig_hzl i 2 AVGhigh, Rpigh=10 ~

—
-

15 dB

-35dB

(d) Lipid-basis penalty  (e) Dual-density  (f) No lipid suppression
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/20 aVOhigh: Rhigh=1 2 avQpighs ngh:l\

Ground Truth NAA NAA RMSE = 8.5%
2 avQpighs Rpigh=10 Lipid-basis penalty
e e,
a |
1
B

.

e o
NAA RMSE = 17.0% NAA RMSE = 41.3%

Taking the NAA map from Gold Standard as reference,
proposed methods have 4.9 and 2.4 times less error relative
to lipid-basis method
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Outer Volume Proposed 1

Suppression

i

Ground Truth NAA

—————
3 2 1ppm

Proposed 2
2 aV0high, Rpigh=10

L]

NAA RMSE = 12.9% R Mw MW MW

NAA RMSE = 14.7% . M\M}M m m

Spectra from OVS: In black
Reconstructed spectra: in blue
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Outer Volume
Suppression

i

Ground Truth NAA

Spectra from OVS:
Reconstructed spectra: in bll,gg

NAA RMSE = 14.7%

In black



Outer Volume
Suppression

i

Ground Truth NAA

Proposed 2
2 aV0high, Rpigh=10

5

NAA RMSE = 12.9%

Spectra from OVS: In black
Reconstructed spectra: in b|LlS



/ vs. gold-standard \
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/ vs. gold-standard \
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AT MIT

Bayesian CS: Marginal prior




Gradient coefficients are modeled as zero mean Gaussians
p(8ly) ~ N(0,y)

this does not constitute a sparse prior

To promote sparsity, Gamma priors are placed over the
variances y

p(yla,b) ~ ' (y*|a, b)
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We can marginalize over y and obtain the marginal prior

pwmm>=fpwwypwmmydy

This turns out to be a Student-t distribution. Using a non-
informative prior for variances with a = b = 0,

1
p(d) x W

Gaussian Student-t
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