MAGNETIC RESONANCE IMAGING GROUP

http://www.rle.mit.edu/mri

 I am a grad student at the MRI group, working with Prof. Elfar Adalsteinsson

We are affiliated with:

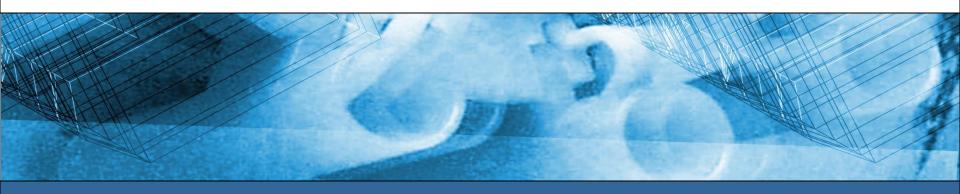
 I have been working on medical image reconstruction using probabilistic analysis & optimization methods.

Outline

1. Joint Bayesian compressed sensing for multi-contrast reconstruction:

reconstruct images with different contrasts from undersampled data

- 2. Quantitative Susceptibility Mapping with magnitude prior: estimate tissue iron concentration from MRI signal phase
- 3. Estimating brain iron concentration in normal aging using L1-QSM:
 - compare brain iron concentration in young & elderly subjects



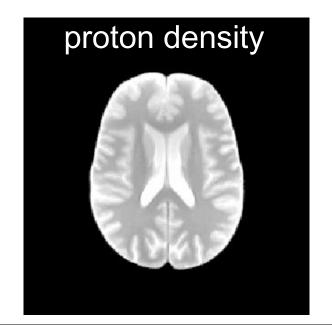
Joint Bayesian Compressed Sensing for Multi-contrast Reconstruction

Berkin Bilgic¹, Vivek K. Goyal¹, Elfar Adalsteinsson^{1,2}

¹EECS, MIT, Cambridge, MA, United States

²Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

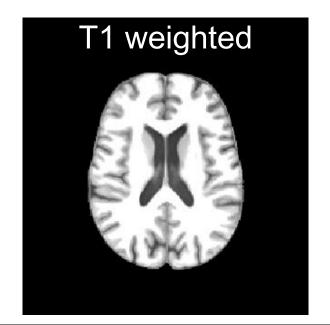
- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- ❖ For instance, SRI24 atlas¹ contains such multi-contrast data,



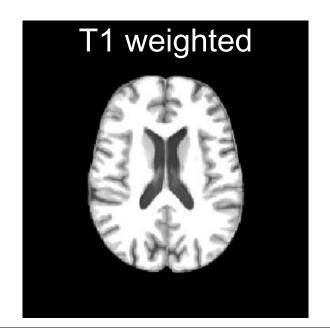
- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- ❖ For instance, SRI24 atlas¹ contains such multi-contrast data,



- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- ❖ For instance, SRI24 atlas¹ contains such multi-contrast data,



- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- ❖ For instance, SRI24 atlas¹ contains such multi-contrast data,



Undersampling the *k***-space**

❖ To reduce data acquisition time, it is possible to collect a subset of k-space frequencies below the Nyquist rate due to

$$y = \mathbf{F}_{\Omega} x + n$$

 $y \in \mathbb{C}^{K}$ is the undersampled k - space data,

 $\mathbf{F}_{\Omega} \in \mathbb{C}^{K \times M}$ is the undersampled 2D - DFT matrix, with K < M

 $x \in \mathbb{R}^{M}$ is the spatial image and,

 $n \in \mathbb{C}^{K}$ is the noise in k - space

Undersampling the k-space

❖ To reduce data acquisition time, it is possible to collect a subset of k-space frequencies below the Nyquist rate due to

$$y = \mathbf{F}_{\Omega} x + n$$

 $y \in \mathbb{C}^{K}$ is the undersampled k - space data,

 $\mathbf{F}_{\Omega} \in \mathbb{C}^{K \times M}$ is the undersampled 2D - DFT matrix, with K < M

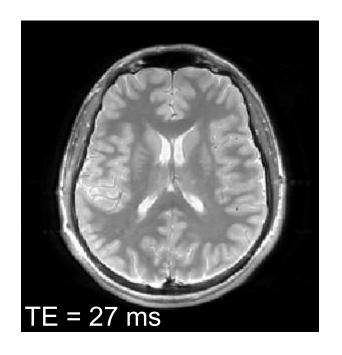
 $x \in \mathbb{R}^{M}$ is the spatial image and,

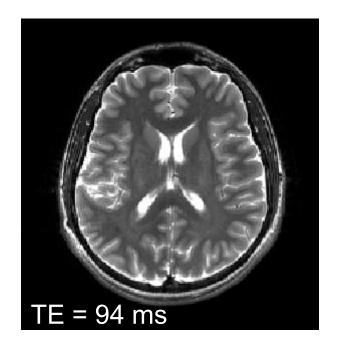
 $n \in \mathbb{C}^{K}$ is the noise in k - space

- This work aims to reconstruct multi-contrast data from undersampled acquisitions by making use of
 - Bayesian Compressed Sensing theory and,
 - The similarity between the different contrast images.

Similarity of multi-contrast images

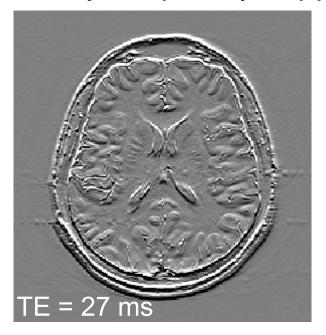
Multi-contrast images possess unique properties, e.g. intensity levels at a given voxel

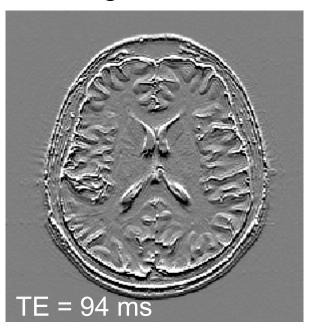




Similarity of multi-contrast images

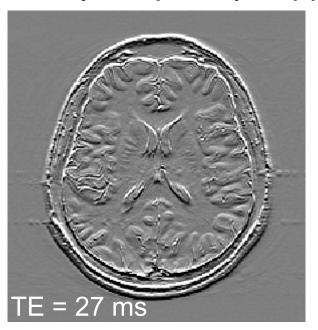
- Multi-contrast images possess unique properties, e.g. intensity levels at a given voxel
- At the same time exhibit common features. We make use of the similarity in sparsity support under gradient transform

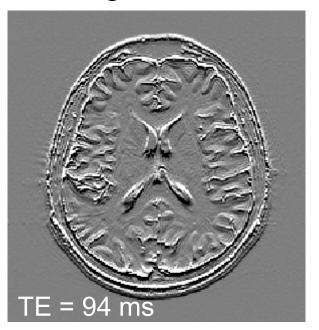




Similarity of multi-contrast images

- Multi-contrast images possess unique properties, e.g. intensity levels at a given voxel
- At the same time exhibit common features. We make use of the similarity in sparsity support under gradient transform

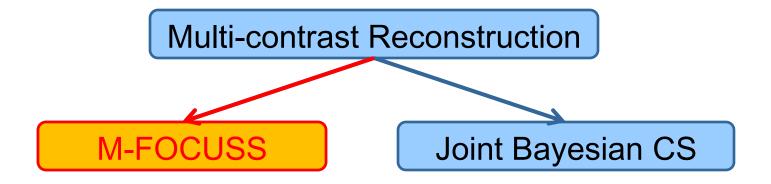




 Positions of non-zero coefficients are similar, even though there is no perfect overlap

Joint reconstruction algorithms

We consider two joint reconstruction algorithms,



And first introduce the M-FOCUSS method.

M-FOCUSS algorithm

First approach is based on using an existing algorithm, M-FOCUSS¹ (Multiple-FOCal Underdetermined System Solver) for joint reconstruction

M-FOCUSS algorithm

- First approach is based on using an existing algorithm, M-FOCUSS¹ (Multiple-FOCal Underdetermined System Solver) for joint reconstruction
- * M-FOCUSS places an ℓ_1 norm penalty on the gradient coefficients of each image, and an ℓ_2 norm penalty across the multi-contrast images

$$\min_{\boldsymbol{x}_{i}} \sum_{i=1}^{L} \left\| \mathbf{F}_{\Omega} \boldsymbol{x}_{i} - \boldsymbol{y}_{i} \right\|_{2}^{2} + \lambda \cdot \sum_{i=1}^{M} \left(\sum_{i=1}^{L} \left| \partial \boldsymbol{x}_{i,j} \right|^{2} \right)^{1/2}$$

M-FOCUSS algorithm

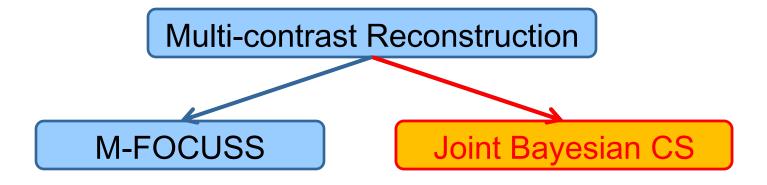
- First approach is based on using an existing algorithm, M-FOCUSS¹ (Multiple-FOCal Underdetermined System Solver) for joint reconstruction
- * M-FOCUSS places an ℓ_1 norm penalty on the gradient coefficients of each image, and an ℓ_2 norm penalty across the multi-contrast images

$$\min_{\mathbf{x}_{i}} \sum_{i=1}^{L} \left\| \mathbf{F}_{\Omega} \mathbf{x}_{i} - \mathbf{y}_{i} \right\|_{2}^{2} + \lambda \cdot \sum_{j=1}^{M} \left(\sum_{i=1}^{L} \left| \partial \mathbf{x}_{i,j} \right|^{2} \right)^{1/2}$$

- As proposed, it is constrained to use the same undersampling pattern for each image
- And makes the strict assumption that the sparsity supports of the images are the same.

Joint reconstruction algorithms

We consider two joint reconstruction algorithms,



Next, we introduce our joint Bayesian reconstruction method.

Sparse representation and data likelihood

* To obtain a sparse representation of the images $\{x_i\}_{i=1}^L$ with L different contrasts, we augment the undersampled k-space data $\{y_i\}_{i=1}^L$ as

$$\left(1 - e^{-2\pi j\omega/n}\right) \cdot \mathbf{y}_i(\omega, \upsilon) = \mathbf{F}_{\Omega_i} \, \boldsymbol{\delta}_i^x \equiv \mathbf{y}_i^x$$

 $\delta_i^x \in \mathbb{R}^M$ is i^{th} vertical image gradient

 $y_i^x \in \mathbb{C}^{K_i}$ is the undersampled k - space data of δ_i^x

Sparse representation and data likelihood

* To obtain a sparse representation of the images $\{x_i\}_{i=1}^L$ with L different contrasts, we augment the undersampled k-space data $\{y_i\}_{i=1}^L$ as

$$\left(1 - e^{-2\pi j\omega/n}\right) \cdot \mathbf{y}_i(\omega, \upsilon) = \mathbf{F}_{\Omega_i} \, \boldsymbol{\delta}_i^x \equiv \mathbf{y}_i^x$$

 $\delta_i^x \in \mathbb{R}^M$ is i^{th} vertical image gradient

 $y_i^x \in \mathbb{C}^{K_i}$ is the undersampled k - space data of δ_i^x

* Modeling the k-space noise to be Gaussian with zero mean and variance σ^2 , the likelihood of observing the data becomes

$$Y_{i}^{x} = \left[\Re\left(\mathbf{y}_{i}^{x}\right), \Im\left(\mathbf{y}_{i}^{x}\right) \right]^{T} \\
\Phi_{i} = \left[\Re\left(\mathbf{F}_{\Omega_{i}}\right), \Im\left(\mathbf{F}_{\Omega_{i}}\right) \right]^{T} \\
P\left(Y_{i}^{x} / \delta_{i}^{x}, \sigma^{2}\right) = \left(2\pi\sigma^{2}\right)^{-K_{i}} \exp\left(-\left\|Y_{i}^{x} - \Phi_{i}\delta_{i}^{x}\right\|_{2}^{2} / 2\sigma^{2}\right)$$

Bayesian analysis for joint inference

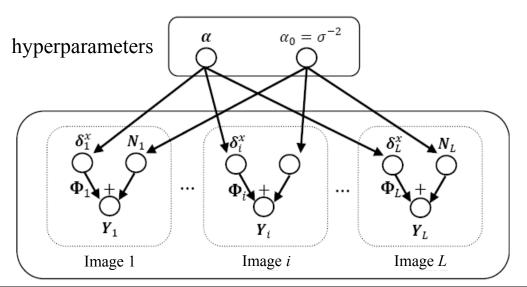
- Next, we would like to impose a sparsity promoting prior distribution over the image gradients $\left\{\delta_i^x\right\}_{i=1}^L$ and $\left\{\delta_i^y\right\}_{i=1}^L$,
- And compute their posterior distribution with the Bayes' rule using this prior, the likelihood term and the observed k-space data $\{Y_i^x\}_{i=1}^L$ and $\{Y_i^y\}_{i=1}^L$
- At the same time, we would like to enable information sharing across the multi-contrast images.

Bayesian analysis for joint inference

- Next, we would like to impose a sparsity promoting prior distribution over the image gradients $\left\{\delta_i^x\right\}_{i=1}^L$ and $\left\{\delta_i^y\right\}_{i=1}^L$,
- And compute their posterior distribution with the Bayes' rule using this prior, the likelihood term and the observed k-space data $\{Y_i^x\}_{i=1}^L$ and $\{Y_i^y\}_{i=1}^L$
- At the same time, we would like to enable information sharing across the multi-contrast images.
- To this end, we carry out the inference within a hierarchical Bayesian model¹

Hierarchical Bayesian Model for joint inference

At the bottom layer, we have the undersampled *k*-space observations, which are jointly parameterized by the hyperparameters on the layer above.

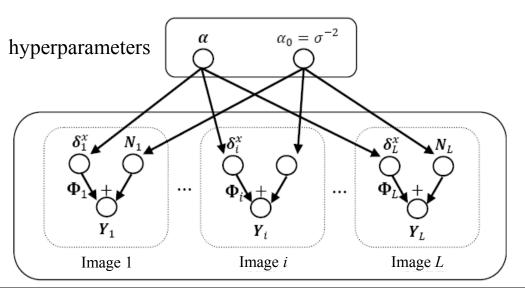


coupled by hyperparameters α and $\alpha_0 = \sigma^{-2}$

k-space observations

Hierarchical Bayesian Model for joint inference

- At the bottom layer, we have the undersampled *k*-space observations, which are jointly parameterized by the hyperparameters on the layer above.
- * We capture the similarity in the gradient domain by defining the hyperparameters α over the L gradient images

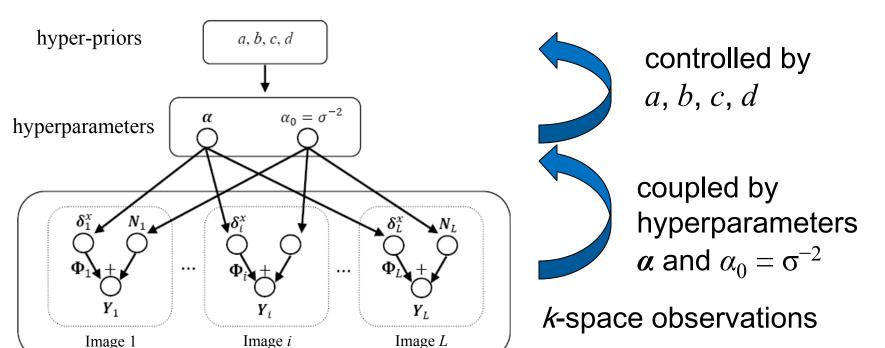


coupled by hyperparameters α and $\alpha_0 = \sigma^{-2}$

k-space observations

Hierarchical Bayesian Model for joint inference

- At the bottom layer, we have the undersampled *k*-space observations, which are jointly parameterized by the hyperparameters on the layer above.
- * We capture the similarity in the gradient domain by defining the hyperparameters α over the L gradient images
- The hyperparameters are in turn controlled by the hyperpriors at the top level.



Prior on the signal coefficients

The gradient coefficients are modeled to be drawn from a product of zero mean Gaussians

$$p(\boldsymbol{\delta}_{i}^{x} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(\boldsymbol{\delta}_{i,j}^{x} \mid 0, \alpha_{j}^{-1})$$

and the precisions of the Gaussians are determined by $\pmb{\alpha} \in \mathbb{R}^M$

And Gamma priors are placed over the hyperparameters α

$$p(\boldsymbol{\alpha} \mid c, d) = \prod_{j=1}^{M} Ga(\alpha_j \mid c, d) \quad \text{where } Ga(\alpha_j \mid c, d) = \frac{d^c}{\Gamma(c)} \alpha_j^{c-1} exp(-d\alpha_j)$$

Prior on the signal coefficients

The gradient coefficients are modeled to be drawn from a product of zero mean Gaussians

$$p(\boldsymbol{\delta}_{i}^{x} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(\boldsymbol{\delta}_{i,j}^{x} \mid 0, \alpha_{j}^{-1})$$

and the precisions of the Gaussians are determined by $\pmb{\alpha} \in \mathbb{R}^M$

And Gamma priors are placed over the hyperparameters α

$$p(\boldsymbol{\alpha} \mid c, d) = \prod_{j=1}^{M} Ga(\alpha_j \mid c, d) \quad \text{where } Ga(\alpha_j \mid c, d) = \frac{d^c}{\Gamma(c)} \alpha_j^{c-1} exp(-d\alpha_j)$$

• We can marginalize over the hyperparameters α and obtain the marginal prior that enforces sparsity $p(\delta_{i,j}^x) \propto \frac{1}{|\delta_i^x|} \text{ Student-} t$

sharp peak at 0
$$p(\delta_{i,j}^x) = \int p(\delta_{i,j}^x/\alpha_j) p(\alpha_j \mid c,d) d\alpha_j$$

$$c,d = 0$$

$$p(\boldsymbol{\delta}_i^x | \boldsymbol{Y}_i^x, \boldsymbol{\alpha}, \alpha_0) = \frac{p(\boldsymbol{Y}_i^x | \boldsymbol{\delta}_i^x, \alpha_0) p(\boldsymbol{\delta}_i^x | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_i^x | \boldsymbol{\alpha}, \alpha_0)}$$

$$\underbrace{p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0})}_{\text{posterior}} = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

posterior
$$p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0}) = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

$$\underbrace{p(\boldsymbol{\delta}_{i}^{x} \mid \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0})}_{\text{posterior}} = \underbrace{\frac{p(\boldsymbol{Y}_{i}^{x} \mid \boldsymbol{\delta}_{i}^{x}, \alpha_{0})}{p(\boldsymbol{Y}_{i}^{x} \mid \boldsymbol{\alpha}, \alpha_{0})}}_{\text{likelihood}} \underbrace{\frac{p(\boldsymbol{Y}_{i}^{x} \mid \boldsymbol{\delta}_{i}^{x}, \alpha_{0})}{p(\boldsymbol{Y}_{i}^{x} \mid \boldsymbol{\alpha}, \alpha_{0})}}_{\text{posterior}}$$

$$\underbrace{p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0})}_{\text{gaussian}} = \underbrace{\frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}}_{\text{gaussian}}_{\text{gaussian}}$$

also Gaussian
$$p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0}) = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

Since the data likelihood and the signal prior are both Gaussian, the posterior for the gradient coefficients is also in the same family,

also Gaussian
$$p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0}) = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

We only need to estimate the α_i 's

$$\delta_{i}^{x} \approx \mathcal{N}(\mu_{i}, \Sigma_{i})$$

$$\mu_{i} = \alpha_{0} \Sigma_{i} \Phi_{i}^{T} Y_{i}^{x}$$

$$\Sigma_{i} = (\alpha_{0} \Phi_{i}^{T} \Phi_{i} + \mathbf{A})^{-1}$$

$$\mathbf{A} = diag(\alpha_{1}, \alpha_{2}, ..., \alpha_{M})$$

Maximum Likelihood estimation of hyperparameters

• We seek point estimates for the hyperparameters α and α_0 in a maximum likelihood framework.

$$\max_{\boldsymbol{\alpha},\alpha_0} \mathbf{\mathcal{L}}(\boldsymbol{\alpha},\alpha_0) = \max_{\boldsymbol{\alpha},\alpha_0} \sum_{i=1}^{L} \log p(\mathbf{Y}_i^x \mid \boldsymbol{\alpha},\alpha_0)$$

- Summation over the L images enables information sharing while estimating the hyperparameters.
- Once the hyperparameters are estimated, the posterior for the gradient coefficients δ_i^x is determined based only on its related k-space data Y_i^x due to,

$$\boldsymbol{\mu}_i = \alpha_0 \, \boldsymbol{\Sigma}_i \boldsymbol{\Phi}_i^T \, \boldsymbol{Y}_i^x$$

Reconstructing the images from their gradients

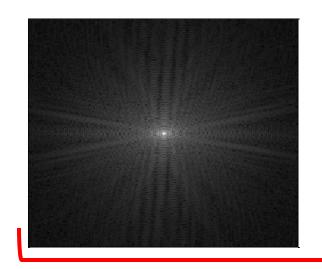
After estimating the vertical and horizontal gradients $\left\{\delta_i^x\right\}_{i=1}^L$ and $\left\{\delta_i^y\right\}_{i=1}^L$, we seek the images $\left\{x_i\right\}_{i=1}^L$ consistent with these and the k-space data $\{y_i\}_{i=1}^L$ in a Least Squares setting,

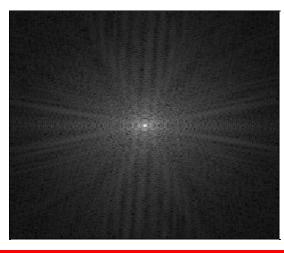
$$\hat{\boldsymbol{x}}_{i} = \underset{\boldsymbol{x}_{i}}{argmin} \left\| \partial_{x} \boldsymbol{x}_{i} - \boldsymbol{\delta}_{i}^{x} \right\|_{2}^{2} + \left\| \partial_{y} \boldsymbol{x}_{i} - \boldsymbol{\delta}_{i}^{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{F}_{\Omega_{i}} \boldsymbol{x}_{i} - \boldsymbol{y}_{i} \right\|_{2}^{2}$$

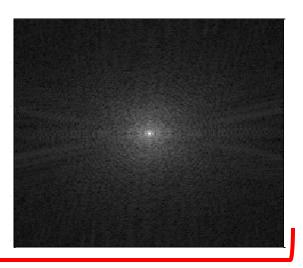
$$for \quad i = 1, ..., L$$

where ∂_x and ∂_y are vertical and horizontal gradient operators

SRI24 Atlas



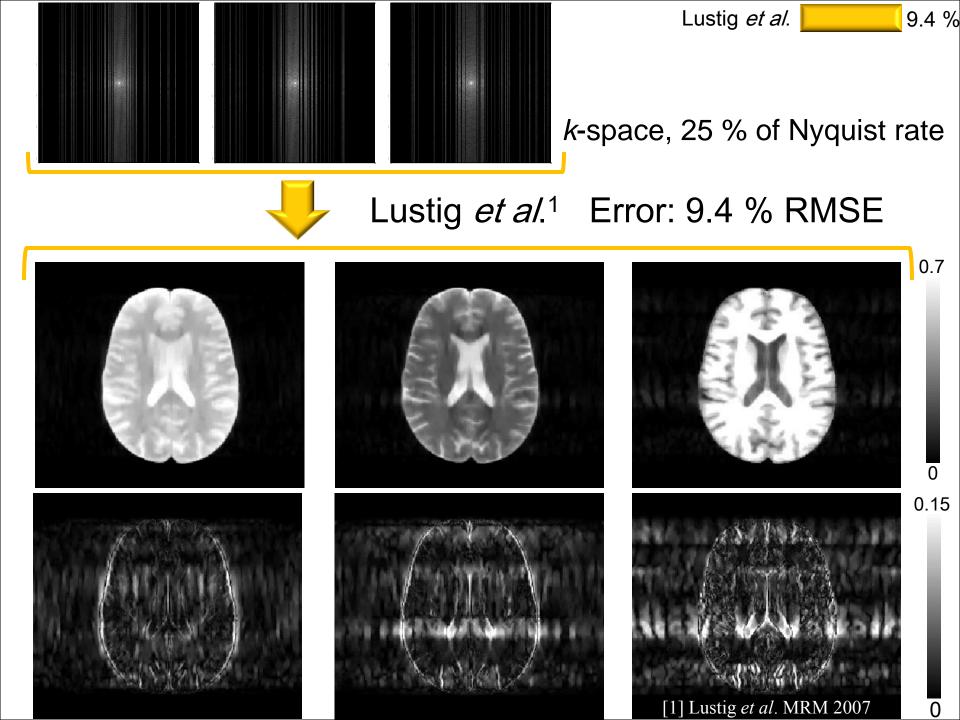


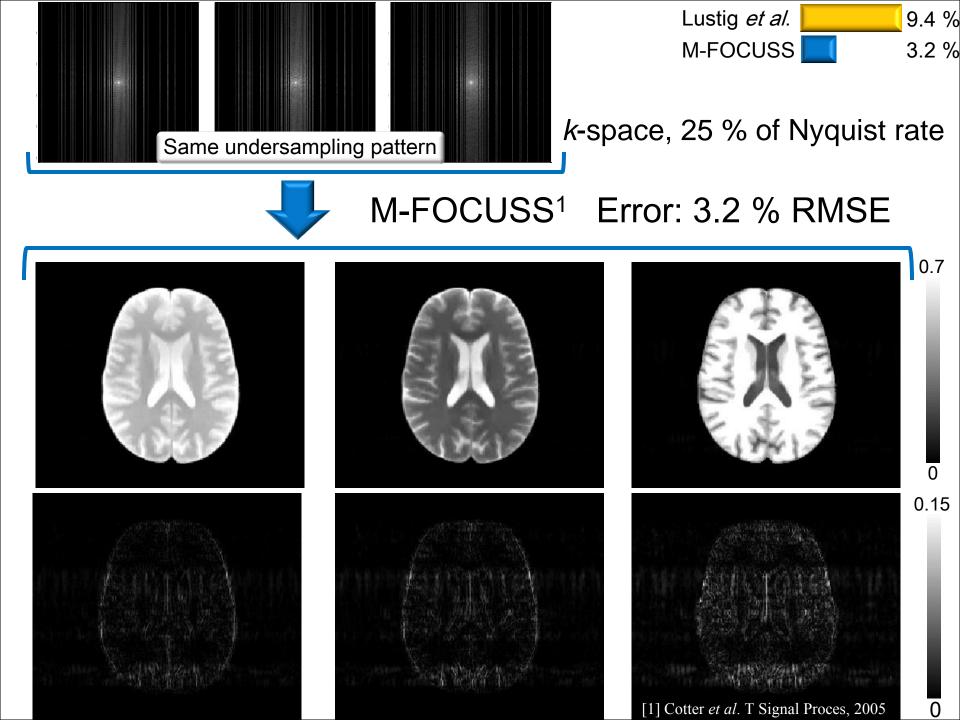


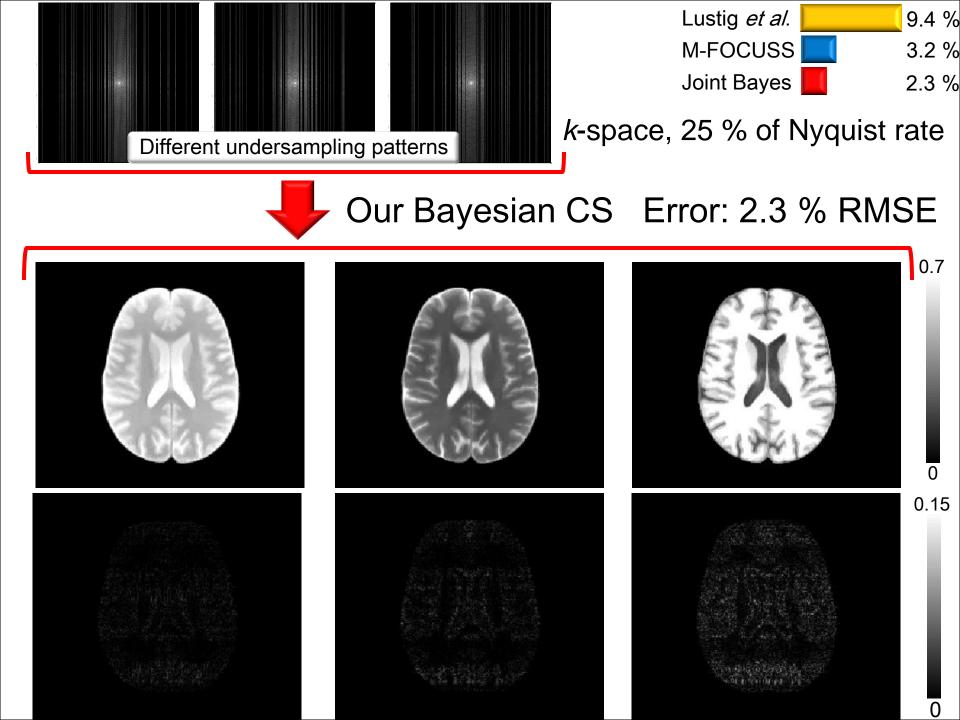
k-space, 100 % of Nyquist rate

Inverse FFT Error: 0 % RMSE

36

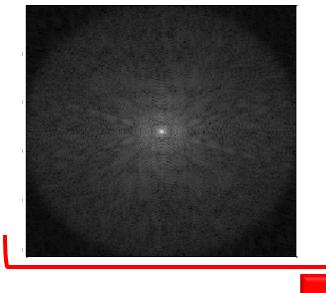


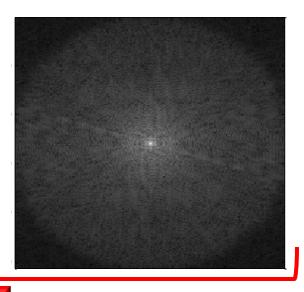




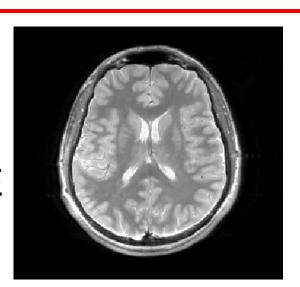
TSE Scans: in vivo acquisition

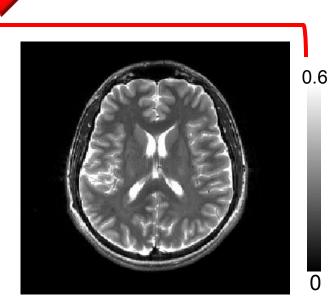
k-space 100 % of Nyquist rate



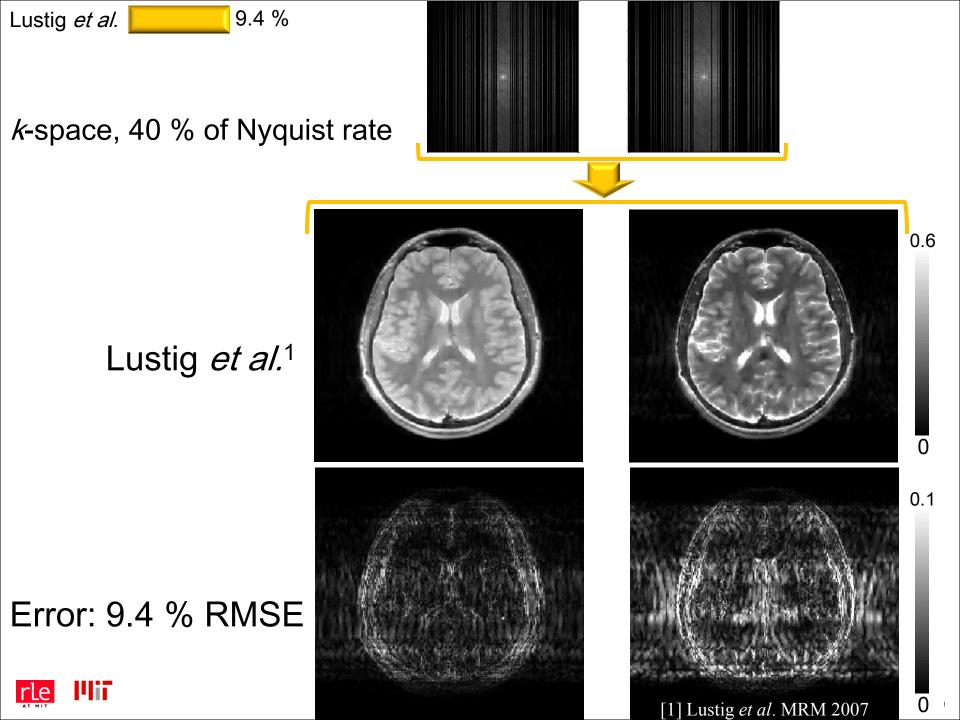


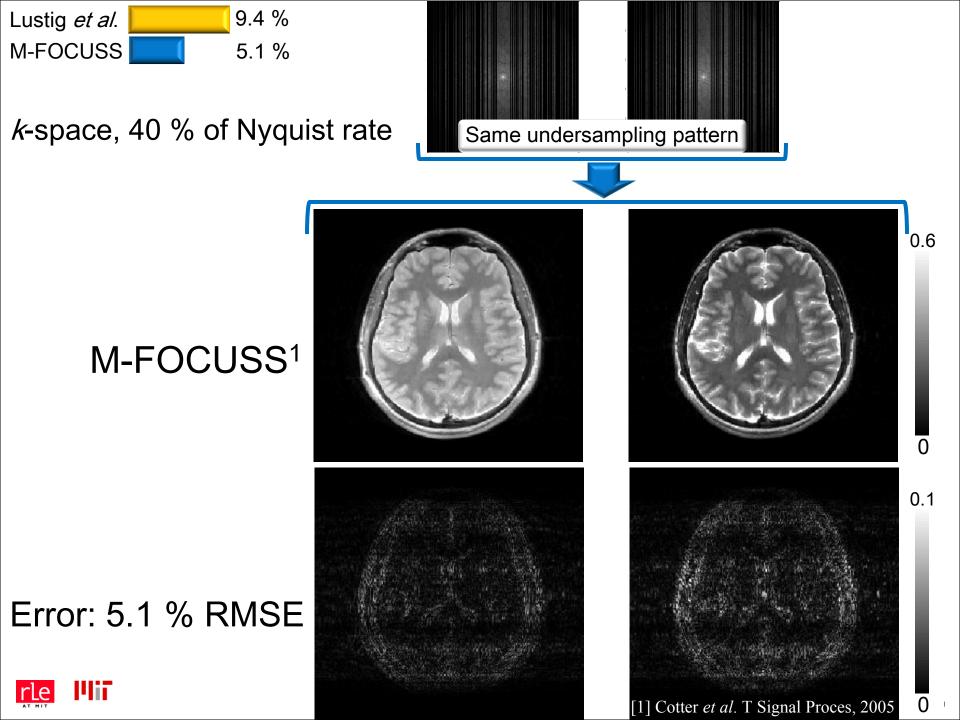
Inverse FFT

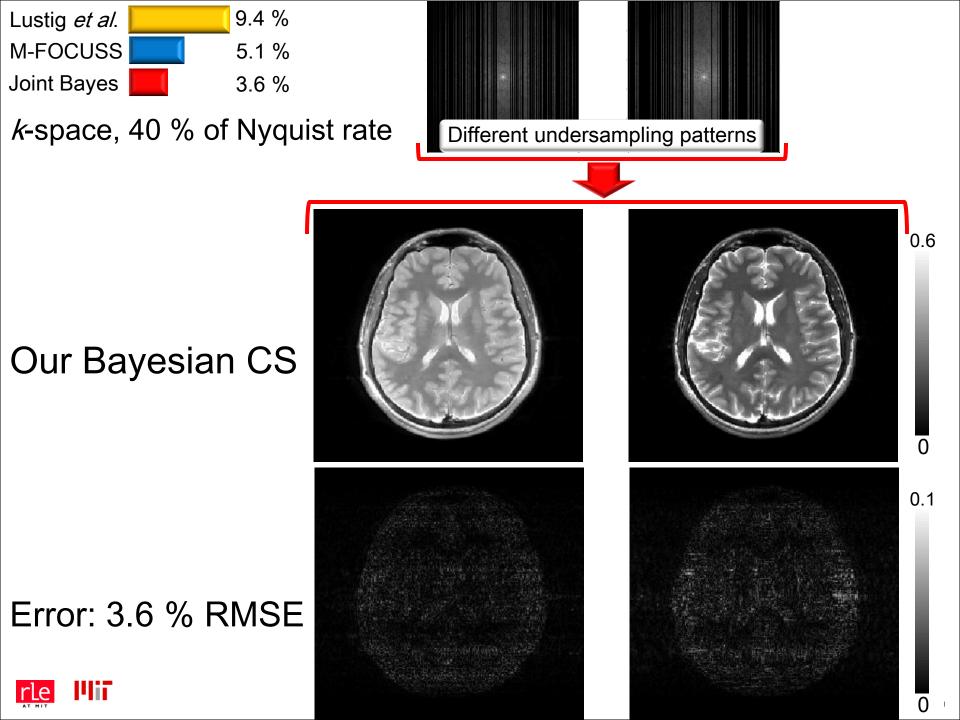




Error: 0 % RMSE







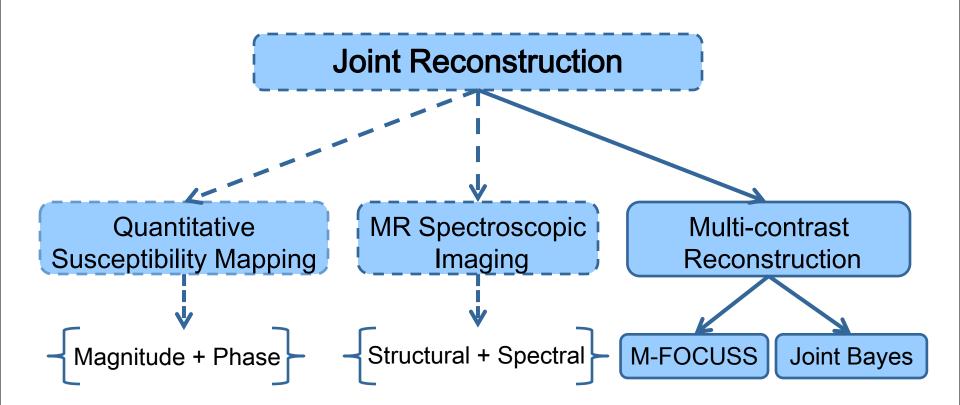
Extensions and Limitations

• We assumed the multi-contrast images to be real-valued. Extension to complex-valued images is possible by using a mirror-symmetric sampling pattern and separating real and imaginary parts of the images.

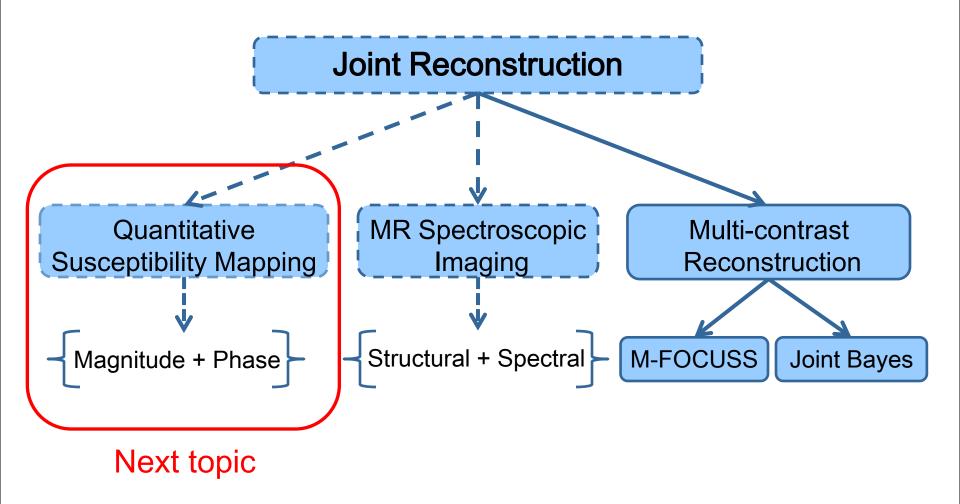
Extensions and Limitations

- We assumed the multi-contrast images to be real-valued. Extension to complex-valued images is possible by using a mirror-symmetric sampling pattern and separating real and imaginary parts of the images.
- Whereas the other two methods take under an hour, the Bayesian method takes about 20 hours with this initial implementation.
- Current work is on increasing the reconstruction speed using
 - Graphics Processing Cards (GPUs) on the hardware front, and
 - Employing variational Bayesian analysis on the algorithm front

Other applications of joint reconstruction

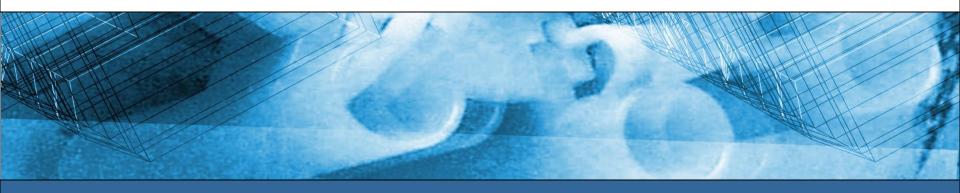


Other applications of joint reconstruction



Conclusion

- We presented two joint reconstruction algorithms, M-FOCUSS and joint Bayesian CS, that significantly improved reconstruction quality of multi-contrast images from undersampled data.
- While joint Bayesian method reduced reconstruction errors by up to 4 times relative to a popular CS algorithm¹, current implementation suffers from long reconstruction times.
- M-FOCUSS is a notable candidate that trades off reconstruction quality and processing speed.



Quantitative Susceptibility Mapping with Magnitude Prior

Berkin Bilgic¹, Audrey P. Fan¹, Elfar Adalsteinsson^{1,2}

¹EECS, MIT, Cambridge, MA, United States ²Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

F: Discrete Fourier Transform matrix

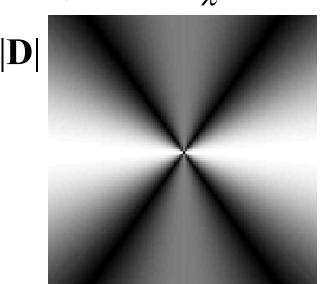
 \mathbf{D} : susceptibility kernel in k-space

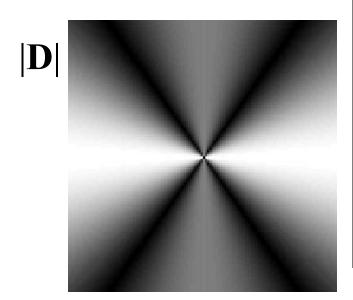
$$\delta = \frac{\varphi}{\gamma \cdot TE \cdot B_0}$$
: normalized field map

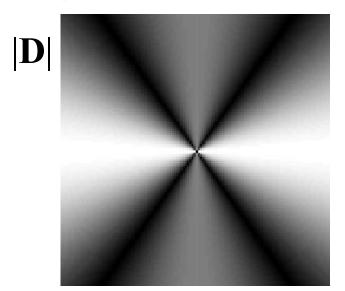
- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem, $\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$
- The inversion is made difficult by zeros on a conical surface in susceptibility kernel D

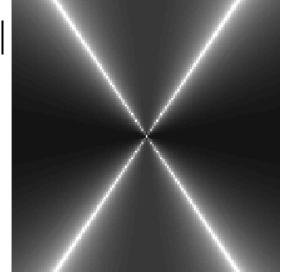
$$\mathbf{D} = \left(\frac{1}{3} - \frac{\mathbf{k}_z^2}{\mathbf{k}^2}\right)$$





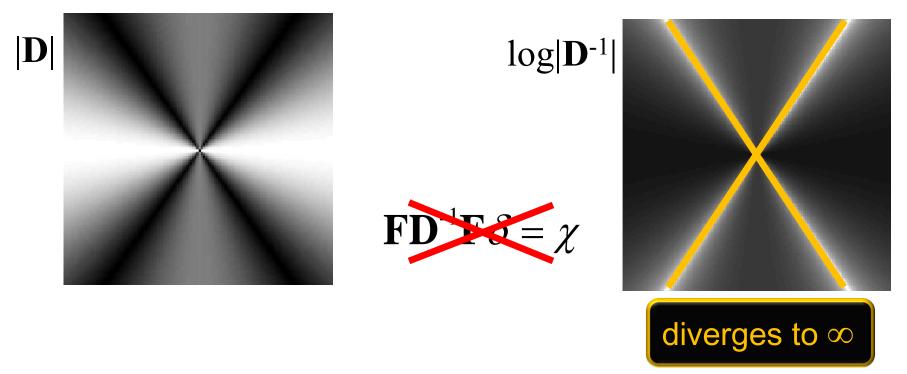


$$\log |\mathbf{D}^{-1}|$$

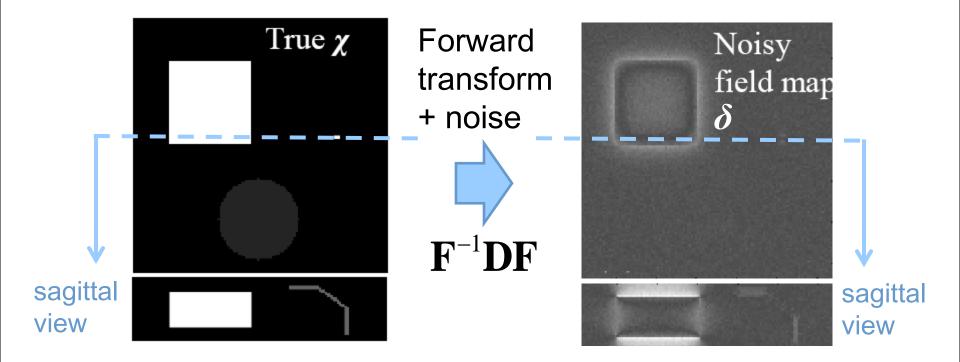


$$\mathbf{F}\mathbf{D}^{-1}\mathbf{F}\,\boldsymbol{\delta}=\boldsymbol{\chi}$$

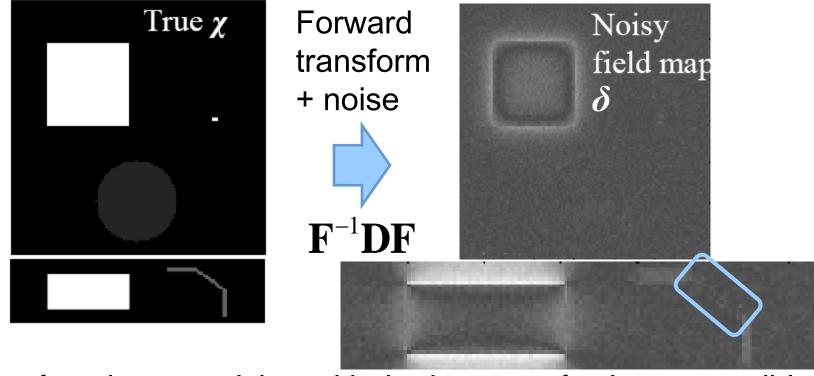
• Solving for χ by convolving with the inverse of ${\bf D}$ is not possible, as it diverges along the magic angle



• Solving for χ by convolving with the inverse of ${\bf D}$ is not possible, as it diverges along the magic angle



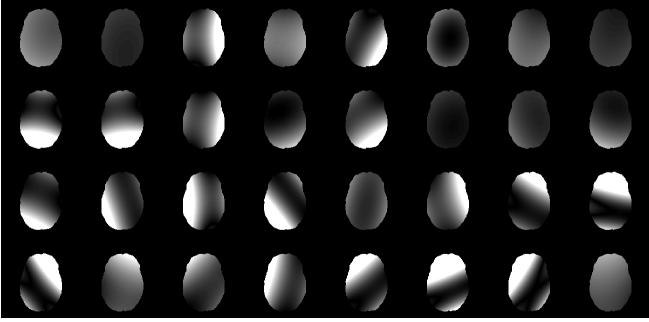
- Solving for χ by convolving with the inverse of **D** is not possible, as it diverges along the magic angle
- Spatial details that have frequency components at the magic angle lose conspicuity in the field map δ



- Solving for χ by convolving with the inverse of **D** is not possible, as it diverges along the magic angle
- Spatial details that have frequency components at the magic angle lose conspicuity in the field map δ
- We propose to use regularization to facilitate the inversion

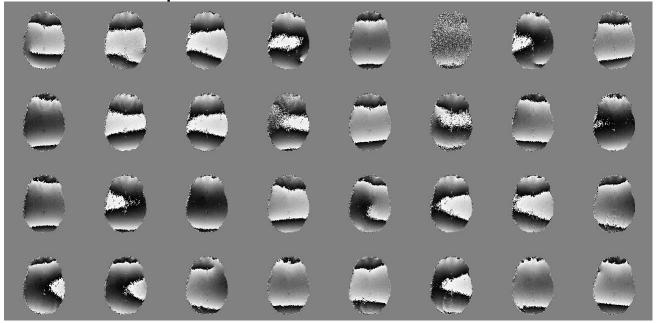
- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil

magnitudes of the coil sensitivities



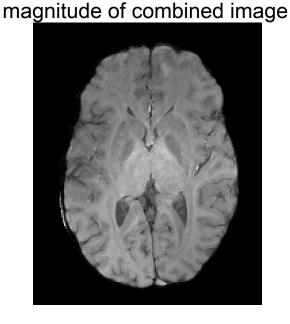
- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil
- Fit 2nd order polynomials to the magnitude of the normalized images → magnitude of the coil sensitivities

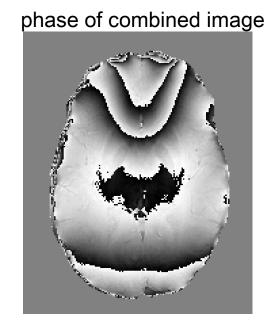
phase of the coil sensitivities



- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil
- Fit 2nd order polynomials to the magnitude of the normalized images → magnitude of the coil sensitivities
- Phase of the normalized images → phase of the coil sensitivities

61 www.rle.mit.edu

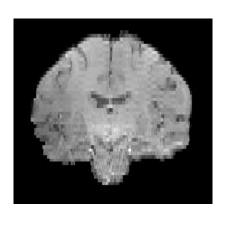


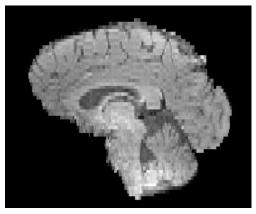


- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil
- Fit 2nd order polynomials to the magnitude of the normalized images → magnitude of the coil sensitivities
- Phase of the normalized images → phase of the coil sensitivities
- Final image is obtained by least-squares coil combination

Brain Mask Extraction & Phase Unwrapping

Brain mask was generated with the FSL Brain Extraction Tool¹



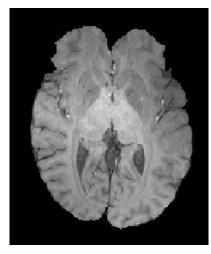




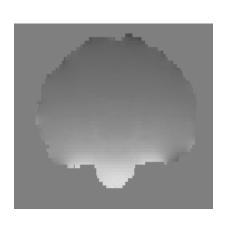
Brain Mask Extraction & Phase Unwrapping

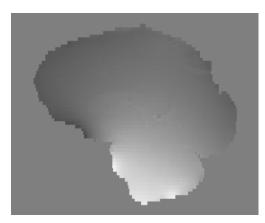
Brain mask was generated with the FSL Brain Extraction Tool¹





Phase unwrapping was done with the FSL PRELUDE²

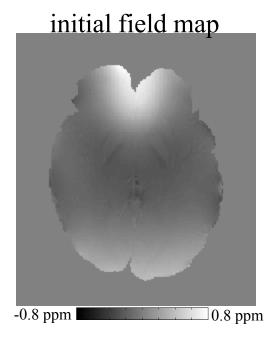


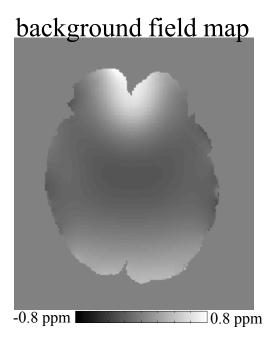


-30 rad

Background Phase Removal

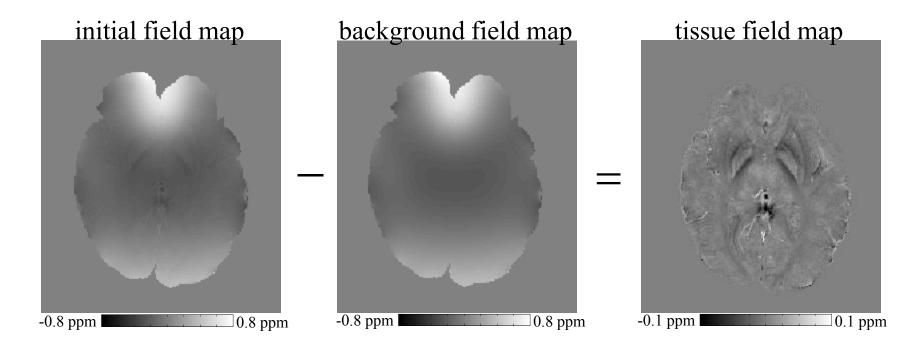
 The background phase was estimated with the Effective Dipole Fitting method¹





Background Phase Removal

- The background phase was estimated with the Effective Dipole Fitting method¹
- Subtracting the estimated background from the initial field map gives the tissue field map



• The tissue field map δ is related to the susceptibility distribution χ via

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

• The tissue field map δ is related to the susceptibility distribution χ via

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

Multiplying both sides with V_xF

$$\mathbf{V}_{x}\mathbf{F}\delta = \mathbf{V}_{x}\mathbf{D}\mathbf{F}\chi$$

where V_x is a diagonal matrix with $V_x(\omega,\omega) = (1 - e^{-2\pi j\omega/n})$

• The tissue field map δ is related to the susceptibility distribution χ via

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

Multiplying both sides with V_xF

$$\mathbf{V}_{x}\mathbf{F}\delta = \mathbf{V}_{x}\mathbf{D}\mathbf{F}\chi$$

where \mathbf{V}_x is a diagonal matrix with $\mathbf{V}_x(\omega,\omega) = (1 - e^{-2\pi j\omega/n})$

This corresponds to taking the spatial gradient along the x axis

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

The gradient of the tissue field map δ is related to the gradient of the susceptibility distribution χ via

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

We solve for ∂_x χ with the FOCUSS algorithm¹

at k^{th} iteration,

$$\mathbf{W}_{k} = \operatorname{diag}\left(\left|\partial_{x} \chi_{k-1}\right|^{1/2}\right)$$

• The gradient of the tissue field map δ is related to the gradient of the susceptibility distribution χ via

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

• We solve for ∂_xχ with the FOCUSS algorithm¹

at k^{th} iteration,

$$\mathbf{W}_{k} = \operatorname{diag}\left(\left|\partial_{x}\chi_{k-1}\right|^{1/2}\right)$$

$$\mathbf{q}_{k} = \operatorname{argmin} \left\|\mathbf{F}\left(\partial_{x}\delta\right) - \mathbf{DFW}_{k}\mathbf{q}\right\|_{2}^{2} + \lambda \left\|\mathbf{q}\right\|_{2}^{2}$$

The gradient of the tissue field map δ is related to the gradient of the susceptibility distribution χ via

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

We solve for ∂_x χ with the FOCUSS algorithm¹

at k^{th} iteration,

$$\mathbf{W}_{k} = \operatorname{diag}\left(\left|\partial_{x}\chi_{k-1}\right|^{1/2}\right)$$

$$\mathbf{q}_{k} = \underset{\mathbf{q}}{\operatorname{argmin}} \left\|\mathbf{F}\left(\partial_{x}\delta\right) - \mathbf{DFW}_{k}\mathbf{q}\right\|_{2}^{2} + \lambda \left\|\mathbf{q}\right\|_{2}^{2}$$

$$\partial_{x}\chi_{k} = \mathbf{W}_{k}\mathbf{q}_{k}$$

 We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.

- We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.
- To impose this prior, we modify the update equations as,

$$\mathbf{W}_{prior} = \operatorname{diag}(\left|\partial_{x} \boldsymbol{m}\right|^{1/2}), \quad \boldsymbol{m}: \text{ magnitude image}$$
at k^{th} iteration,
$$\mathbf{W}_{k} = \operatorname{diag}(\left|\partial_{x} \chi_{k-1}\right|^{1/2})$$

$$\boldsymbol{q}_{k} = \underset{\boldsymbol{q}}{\operatorname{argmin}} \left\|\mathbf{F}(\partial_{x} \delta) - \mathbf{DF} \mathbf{W}_{prior} \mathbf{W}_{k} \boldsymbol{q}\right\|_{2}^{2} + \lambda \left\|\boldsymbol{q}\right\|_{2}^{2}$$

$$\partial_{x} \chi_{k} = \mathbf{W}_{prior} \mathbf{W}_{k} \boldsymbol{q}_{k}$$

- We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.
- Expressed in terms of $\partial_{x} \chi$,

$$\mathbf{W}_{prior} = \operatorname{diag}(|\partial_x m|^{1/2}), \quad m: \text{ magnitude image}$$

$$\partial_{x} \chi_{k} = \underset{\partial}{\operatorname{argmin}} \left\| \mathbf{F} (\partial_{x} \delta) - \mathbf{D} \mathbf{F} (\partial_{x} \chi) \right\|_{2}^{2} + \lambda \left\| \mathbf{W}_{prior}^{-1} \mathbf{W}_{k}^{-1} (\partial_{x} \chi) \right\|_{2}^{2}$$

- We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.
- Expressed in terms of $\partial_x \chi$,

$$\mathbf{W}_{prior} = \operatorname{diag}(|\partial_x m|^{1/2}), \quad m: \text{ magnitude image}$$

$$\partial_{x} \chi_{k} = \underset{\partial}{\operatorname{argmin}} \left\| \mathbf{F} (\partial_{x} \delta) - \mathbf{D} \mathbf{F} (\partial_{x} \chi) \right\|_{2}^{2} + \lambda \left\| \mathbf{W}_{prior}^{-1} \mathbf{W}_{k}^{-1} (\partial_{x} \chi) \right\|_{2}^{2}$$

if $\partial_x m_i$ is small, $\mathbf{W}_{prior}^{-1}(i,i)$ will be large and penalize $\partial_x \chi_i$ more

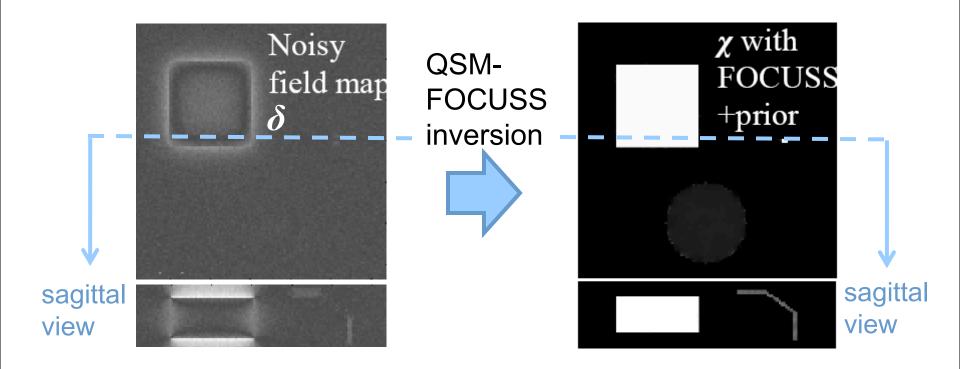
 After estimating the spatial gradients along x, y and z axes, the susceptibility distribution that matches these is found by solving a least squares problem,

$$\chi = \underset{\theta}{\operatorname{argmin}} \sum_{r=x,y,z} \| \partial_r \theta - \partial_r \chi \|_2^2 + \beta \cdot \| \delta - \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \theta \|_2^2$$

 After estimating the spatial gradients along x, y and z axes, the susceptibility distribution that matches these is found by solving a least squares problem,

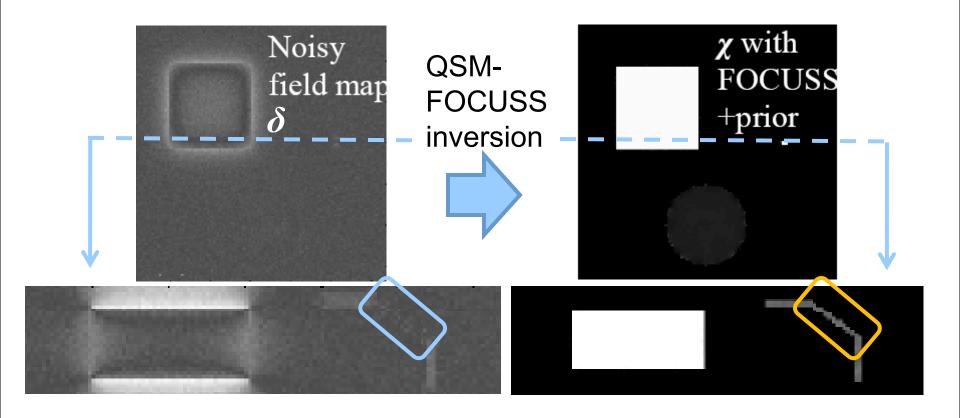
$$\chi = \underset{\theta}{\operatorname{argmin}} \sum_{r=x,y,z} \left\| \partial_r \theta - \partial_r \chi \right\|_2^2 + \beta \cdot \left\| \delta - \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \theta \right\|_2^2$$
matching gradients data consistency

QSM result: FOCUSS-QSM with magnitude prior



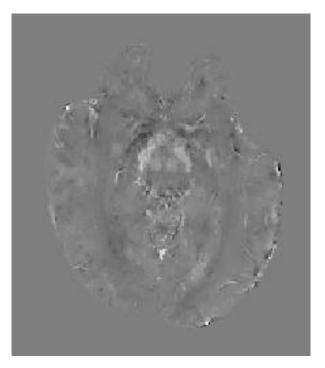
• Starting from the noisy field map δ , FOCUSS-QSM with magnitude prior yielded a susceptibility map with 1.3 % RMSE relative to true χ .

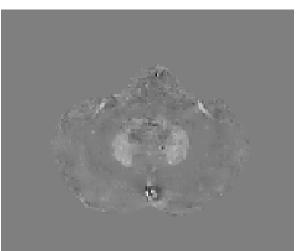
QSM result: FOCUSS-QSM with magnitude prior



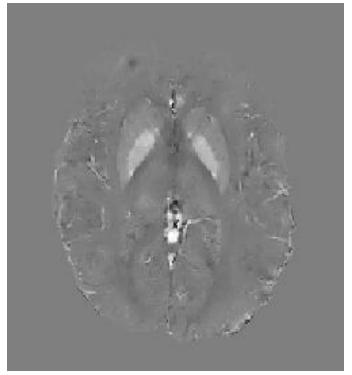
 The reconstructed susceptibility map managed to recover the vessel at the magic angle, which was virtually lost in the field map.

In vivo QSM result: FOCUSS-QSM with magnitude prior

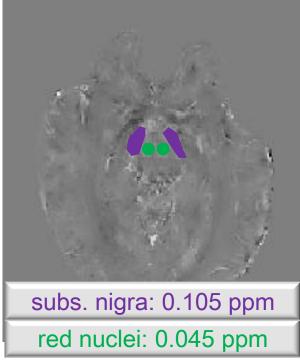


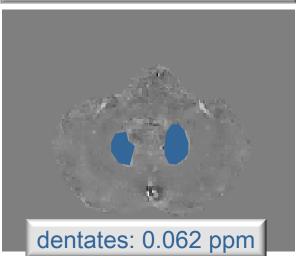


- 3D GRE acquisition at 3T
- 32 channel receive array
- 0.94x0.94x2.5 mm³ resolution
- ❖ TE: 20 ms



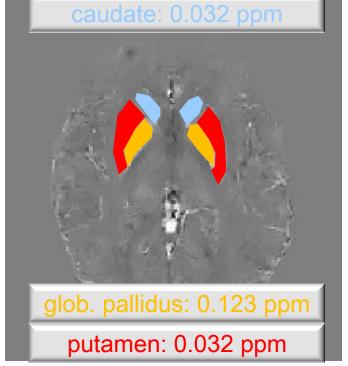
In vivo QSM result: FOCUSS-QSM with magnitude prior





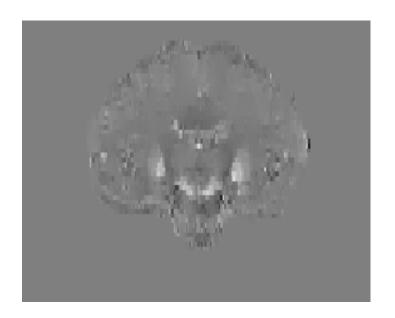
Structure	Δχ [ppm]
Globus Pallidus	12.3
Substantia Nigra	10.5
Dentate	6.2
Red Nucleus	4.5
Putamen	3.2
Caudate	2.3

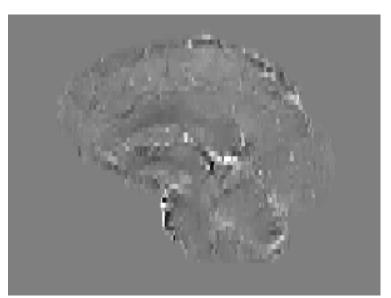
x 0.01 ppm, relative to χ_{CSF}

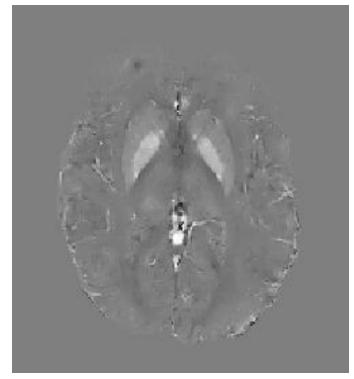


-0.3 ppm 0.3 ppm

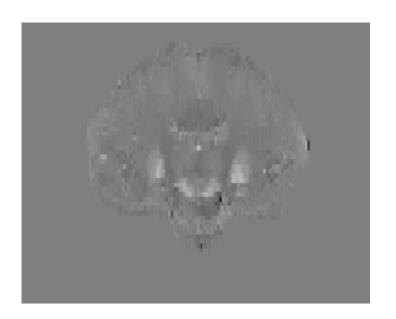
In vivo QSM result: FOCUSS-QSM with magnitude prior



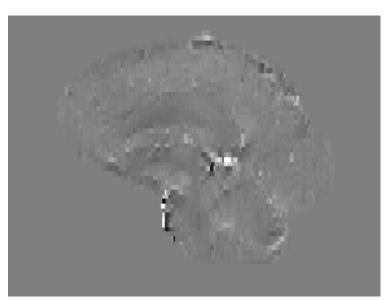


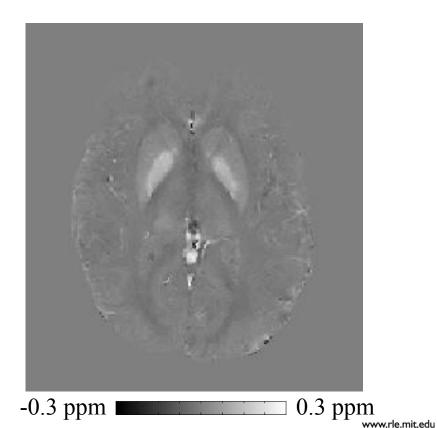


In vivo QSM result: FOCUSS-QSM with a prior

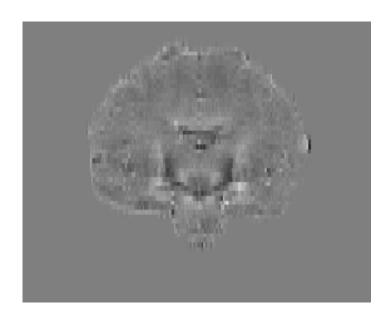


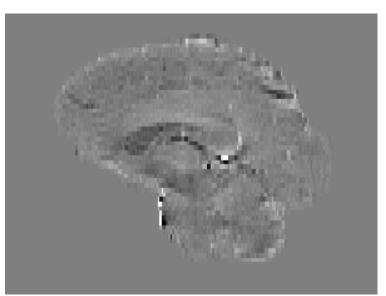
Vessels are less apparent without the magnitude prior

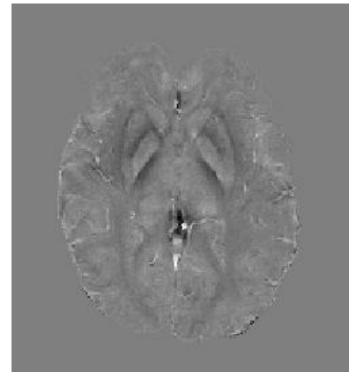




Corresponding Tissue Field Map:

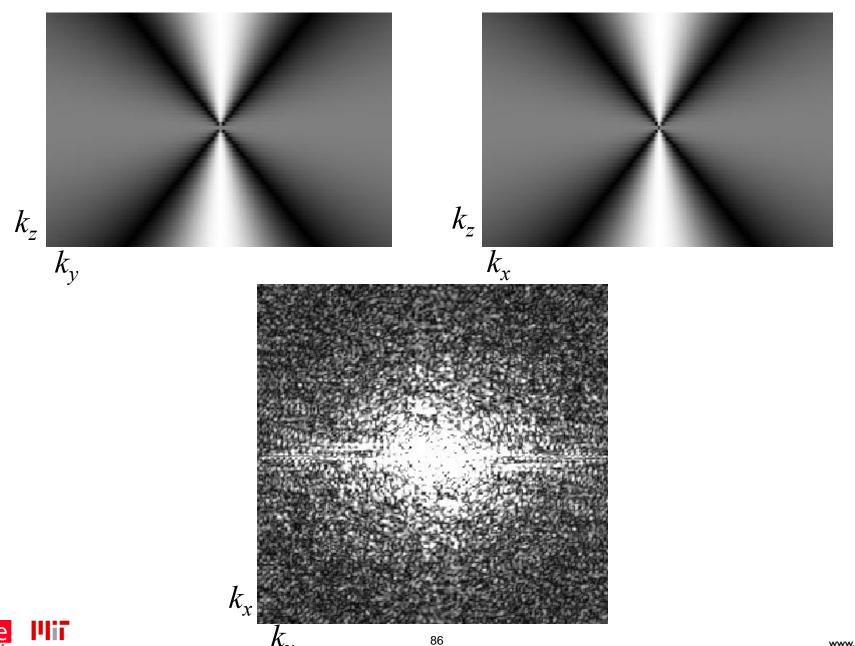




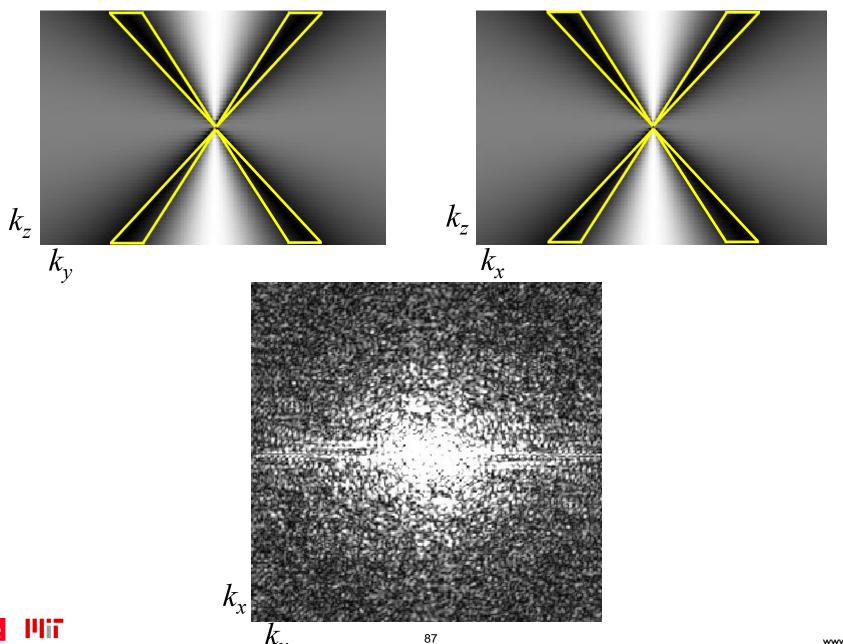


0.1 ppm -0.1 ppm I

In vivo QSM result with magnitude prior in k-space:



In vivo QSM result with magnitude prior in k-space:



Potential drawbacks of FOCUSS-QSM

- Computation time:
 - ❖ Dipole fitting for background removal ≈ 2 hours
 - FOCUSS-QSM ≈ 1 hours
 - ❖ Total processing time ≈ 3 hours for data of size [256x256x64]

Potential drawbacks of FOCUSS-QSM

Computation time:

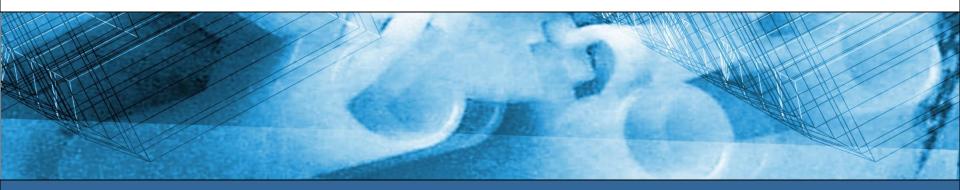
- ❖ Dipole fitting for background removal ≈ 2 hours
- FOCUSS-QSM ≈ 1 hours
- ❖ Total processing time ≈ 3 hours for data of size [256x256x64]

Solution:

Both algorithms solve Least Squares problems, Graphics Processing Card (GPU) implementation will greatly enhance the performance

Conclusion

- Starting with a multi-coil 3D GRE acquisition, we outlined coil combination and background phase elimination methods that yielded the tissue field map.
- We introduced a Quantitative Susceptibility Mapping algorithm that makes use of the magnitude image to facilitate the kernel inversion.



Estimating Brain Iron Concentration in Normal Aging using L1-QSM

Berkin Bilgic¹, Adolf Pfefferbaum^{2,3}, Torsten Rohlfing², Edith V. Sullivan³, and Elfar Adalsteinsson^{1,4}

- ¹ EECS, MIT, Cambridge, MA, United States
- ² Neuroscience Program, SRI International, USA
- ³ Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- ⁴ Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

L1 Regularized Susceptibility Inversion

 Again, we are seeking the susceptibility map that matches the observed tissue phase,

Find
$$\chi$$
 such that $\delta = \mathbf{F}^{-1}\mathbf{DF}\chi$

- The susceptibility values are tied to the paramagnetic properties of the underlying tissues; hence they vary smoothly across space within anatomical boundaries.
- Based on this, we model the susceptibility map to be approximately piece-wise constant,
- And formulate this belief by invoking sparsity inducing L1 norm on the spatial gradients of χ

L1 Regularized Susceptibility Inversion

We solve for the susceptibility distribution with a convex program,

$$\chi_{\text{tissue}} = \operatorname{argmin}_{\chi} \|\boldsymbol{\delta} - \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\,\chi\|_{2}^{2} + \lambda \left(\|\partial_{x}\,\chi\|_{1} + \|\partial_{y}\,\chi\|_{1} + \|\partial_{z}\,\chi\|_{1}\right)$$

- We call this method L1-QSM, for which λ serves as a regularization parameter that adjusts the smoothness of the solution
- This is essentially the same formulation as FOCUSS-QSM, but is less sophisticated as magnitude information is not used

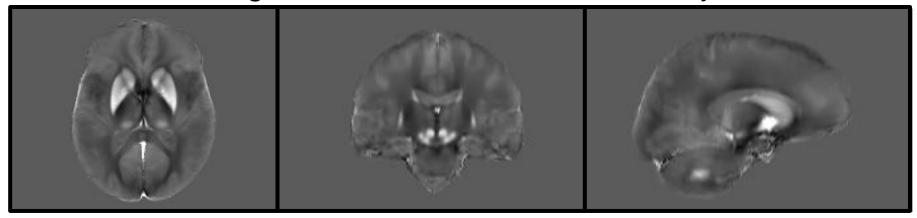
Tissue iron deposition in young and elderly subjects

- Tissue susceptibility is a sensitive marker of iron concentration, however it is partially influenced by myelin, proteins etc.
- In this study, we used L1-QSM to test the hypothesis that, iron deposition in striatal and brain stem nuclei would be greater in older than younger adults

Subjects:

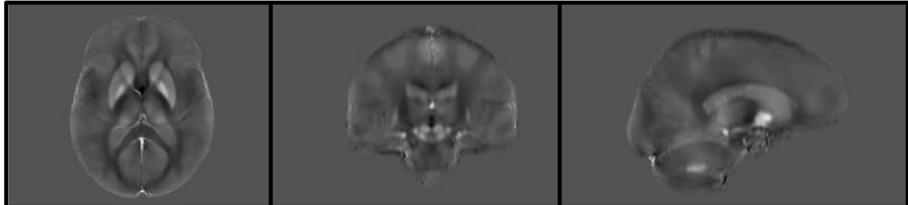
11 younger adults (age = 24.0 ± 2.5) and 12 elderly adults (age = 74.4 ± 7.6)

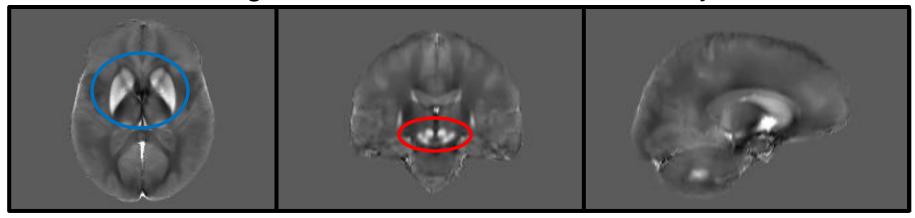
<u>Data:</u>
 Susceptibility Weighted 3D SPGR at 1.5 T



−0.1 ppm 0.16 ppm

Average L1-QSM Result for the Young

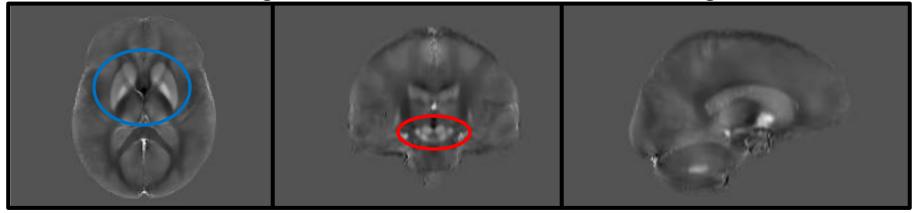


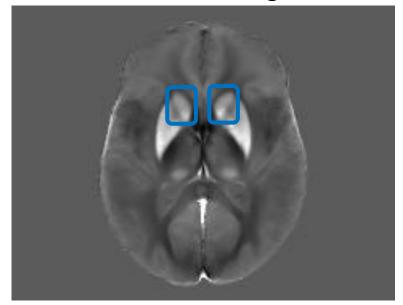


Striatal ROIs Brain Stem ROIs

−0.1 ppm 0.16 ppm

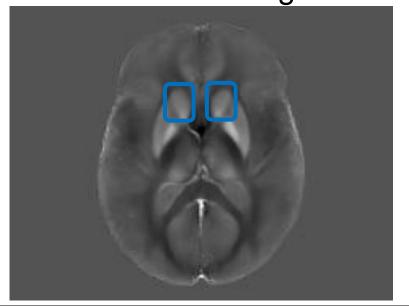
Average L1-QSM Result for the Young





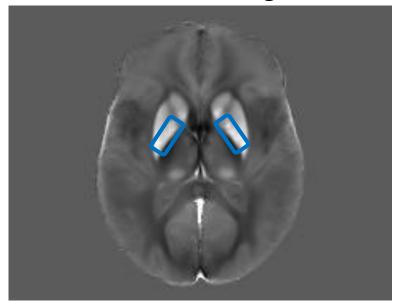
Elderly caudate nucleus: 0.059 ppm

Average L1-QSM Result for the Young



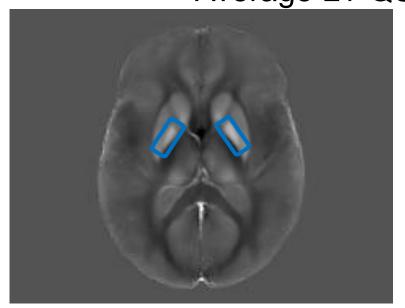
Young caudate nucleus: 0.023 ppm

t-test result: **p < 0.0001 significant**



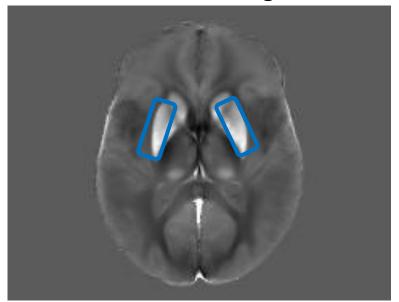
Elderly globus pallidus: 0.120 ppm

Average L1-QSM Result for the Young



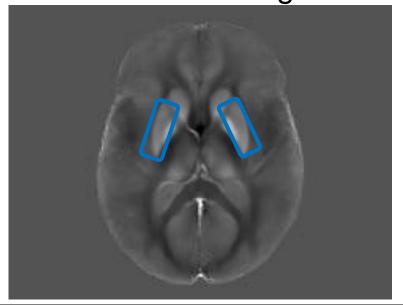
Young globus pallidus: 0.069 ppm

t-test result: **p < 0.0001 significant**



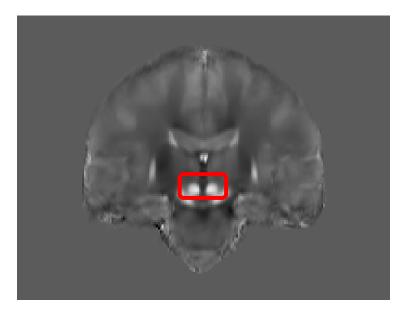
Elderly putamen: 0.095 ppm

Average L1-QSM Result for the Young



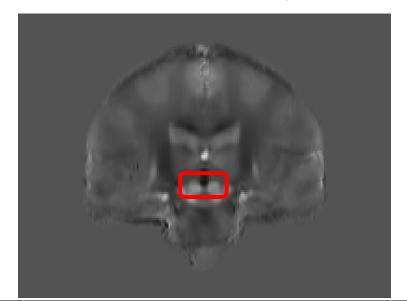
Young putamen: 0.024 ppm

t-test result: **p < 0.0001 significant**



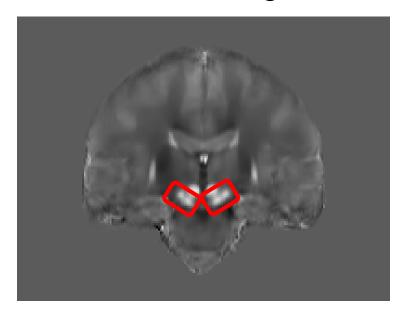
Elderly red nucleus: 0.091 ppm

Average L1-QSM Result for the Young



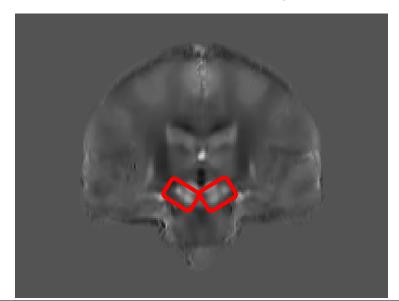
Young red nucleus: 0.030 ppm

t-test result: **p = 0.0008 significant**



Elderly substantia nigra: 0.055 ppm

Average L1-QSM Result for the Young

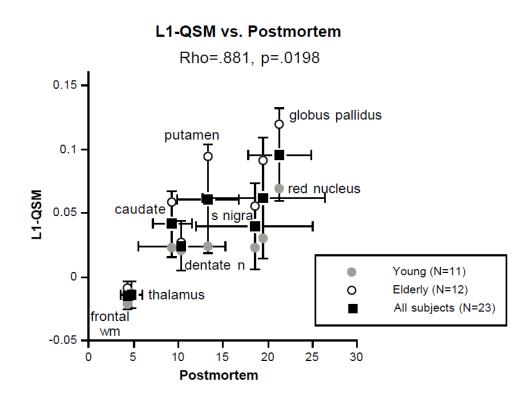


Young substantia nigra: 0.023 ppm

t-test result: **p = 0.0178 significant**

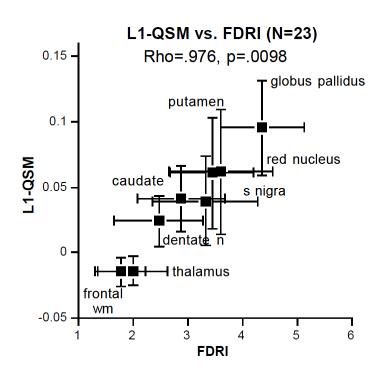
L1-QSM vs. Postmortem

 L1-QSM results correlate well with published postmortem results¹, with Rho = 0.881, p = 0.0198



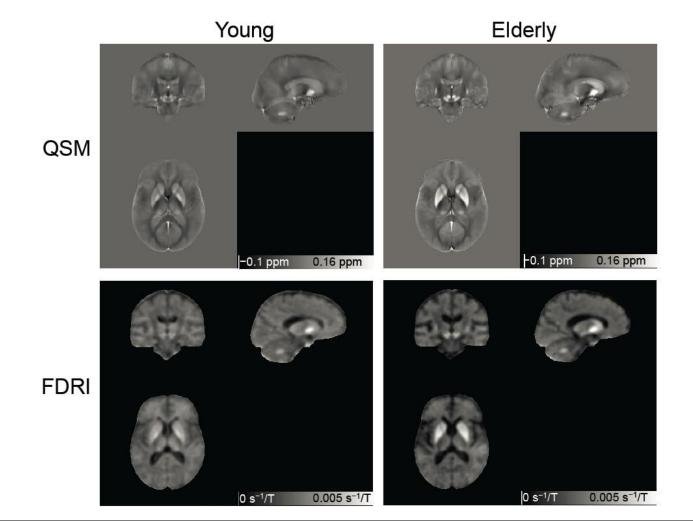
L1-QSM vs. FDRI

- Field-Dependent Relaxation Rate Increase (FDRI)¹ is another iron quantification that requires data acquisition at two different main field strengths.
- L1-QSM is strongly correlated with FDRI results, with Rho = 0.976, p = 0.0098



L1-QSM vs. FDRI

 L1-QSM requires data acquisition at a single main magnetic field strength, and has much higher spatial resolution, enabling iron quantification in vessels.



Effect of regularization parameter λ

