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Outline

1. Joint Bayesian compressed sensing for multi-contrast 

reconstruction: 

reconstruct images with different contrasts from undersampled data

2. Quantitative Susceptibility Mapping with magnitude prior:

estimate tissue iron concentration from MRI signal phase

3. Estimating brain iron concentration in normal aging using 

L1-QSM:

compare brain iron concentration in young & elderly subjects
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Multi-contrast data acquisition

 In clinical MRI, it is common to image the same region of 

interest under multiple contrast settings

 This aims to increase the diagnostic power of MRI as tissues 

exhibit different characteristics under different contrasts

 For instance, SRI24 atlas1 contains such multi-contrast data, 
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 In clinical MRI, it is common to image the same region of 

interest under multiple contrast settings

 This aims to increase the diagnostic power of MRI as tissues 

exhibit different characteristics under different contrasts

 For instance, SRI24 atlas1 contains such multi-contrast data, 

proton densityT2 weightedT1 weighted

Multi-contrast data acquisition

7 [1] Rohlfing et al. Hum Brain Map, 2010



Undersampling the k-space

 To reduce data acquisition time, it is possible to collect a 

subset of k-space frequencies below the Nyquist rate due to
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Undersampling the k-space

 To reduce data acquisition time, it is possible to collect a 

subset of k-space frequencies below the Nyquist rate due to

 This work aims to reconstruct multi-contrast data from 

undersampled acquisitions by making use of

 Bayesian Compressed Sensing theory and,

 The similarity between the different contrast images.
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Similarity of multi-contrast images

Multi-contrast images possess unique properties, e.g. 

intensity levels at a given voxel 
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the similarity in sparsity support under gradient transform
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Similarity of multi-contrast images

Multi-contrast images possess unique properties, e.g. 

intensity levels at a given voxel

 At the same time exhibit common features.  We make use of 

the similarity in sparsity support under gradient transform

 Positions of non-zero coefficients are similar, even though 

there is no perfect overlap
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Joint reconstruction algorithms

We consider two joint reconstruction algorithms,
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Multi-contrast Reconstruction

M-FOCUSS Joint Bayesian CSM-FOCUSS

 And first introduce the M-FOCUSS method. 



M-FOCUSS algorithm

 First approach is based on using an existing algorithm, M-

FOCUSS1 (Multiple-FOCal Underdetermined System Solver) 

for joint reconstruction
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M-FOCUSS places an      norm penalty on the gradient 

coefficients of each image, and an      norm penalty across the 

multi-contrast images
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 First approach is based on using an existing algorithm, M-

FOCUSS1 (Multiple-FOCal Underdetermined System Solver) 

for joint reconstruction

M-FOCUSS places an      norm penalty on the gradient 

coefficients of each image, and an      norm penalty across the 

multi-contrast images

 As proposed, it is constrained to use the same undersampling 

pattern for each image

 And makes the strict assumption that the sparsity supports of  

the images are the same.
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Joint Bayesian CS

Joint reconstruction algorithms

We consider two joint reconstruction algorithms,
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Multi-contrast Reconstruction

M-FOCUSS Joint Bayesian CS

 Next, we introduce our joint Bayesian reconstruction method.



 To obtain a sparse representation of the images           with L

different contrasts, we augment the undersampled k-space 

data           as
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 To obtain a sparse representation of the images           with L

different contrasts, we augment the undersampled k-space 

data           as

Modeling the k-space noise to be Gaussian with zero mean 

and variance σ2, the likelihood of observing the data becomes
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Bayesian analysis for joint inference

 Next, we would like to impose a sparsity promoting prior 

distribution over the image gradients           and          ,  

 And compute their posterior distribution with the Bayes’ rule 

using this prior, the likelihood term and the observed k-space 

data           and

 At the same time, we would like to enable information sharing 

across the multi-contrast images. 

20

 
1

L
x

i
i




 
1

L
y

i
i




 
1

L
x

i
i

Y


 
1

L
y

i
i

Y




Bayesian analysis for joint inference

 Next, we would like to impose a sparsity promoting prior 

distribution over the image gradients           and          ,  

 And compute their posterior distribution with the Bayes’ rule 

using this prior, the likelihood term and the observed k-space 

data           and

 At the same time, we would like to enable information sharing 

across the multi-contrast images. 

 To this end, we carry out the inference within a hierarchical 

Bayesian model1
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Hierarchical Bayesian Model for joint inference

 At the bottom layer, we have the undersampled k-space 

observations, which are jointly parameterized by the 

hyperparameters on the layer above. 

k-space observations

coupled by 

hyperparameters

α and α0 = σ−2

hyperparameters

Image 1 Image i Image L
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Hierarchical Bayesian Model for joint inference

 At the bottom layer, we have the undersampled k-space 

observations, which are jointly parameterized by the 

hyperparameters on the layer above.

We capture the similarity in the gradient domain by defining 

the hyperparameters α over the L gradient images

 The hyperparameters are in turn controlled by the hyper-

priors at the top level. 

k-space observations

coupled by 

hyperparameters

α and α0 = σ−2

controlled by 

a, b, c, d

hyper-priors

hyperparameters

Image 1 Image i Image L



Prior on the signal coefficients

 The gradient coefficients are modeled to be drawn from a product 

of zero mean Gaussians

and the precisions of the Gaussians are determined by 

 And Gamma priors are placed over the hyperparameters α
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Prior on the signal coefficients

 The gradient coefficients are modeled to be drawn from a product 

of zero mean Gaussians

and the precisions of the Gaussians are determined by 

 And Gamma priors are placed over the hyperparameters α

 We can marginalize over the hyperparameters α and obtain the 

marginal prior that enforces sparsity
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Maximum Likelihood estimation of hyperparameters

We seek point estimates for the hyperparameters α and α0  in 

a maximum likelihood framework.

 Summation over the L images enables information sharing

while estimating the hyperparameters.

Once the hyperparameters are estimated, the posterior for 

the gradient coefficients       is determined based only on its 

related k-space data       due to, 
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Reconstructing the images from their gradients

 After estimating the vertical and horizontal gradients

and             , we seek the images            consistent

with these and the k-space data            in a Least Squares 

setting,
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Lustig et al.1 Error: 9.4 % RMSE
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M-FOCUSS1 Error: 3.2 % RMSE
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Our Bayesian CS   Error: 2.3 % RMSE
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We assumed the multi-contrast images to be real-valued. 

Extension to complex-valued images is possible by using a 

mirror-symmetric sampling pattern and separating real and 

imaginary parts of the images.

44
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Extensions and Limitations

We assumed the multi-contrast images to be real-valued. 

Extension to complex-valued images is possible by using a 

mirror-symmetric sampling pattern and separating real and 

imaginary parts of the images.

Whereas the other two methods take under an hour, the 

Bayesian method takes about 20 hours with this initial 

implementation.

 Current work is on increasing the reconstruction speed using

 Graphics Processing Cards (GPUs) on the hardware front, and

 Employing variational Bayesian analysis on the algorithm front
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Other applications of joint reconstruction
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Other applications of joint reconstruction
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Conclusion

 We presented two joint reconstruction algorithms, M-FOCUSS 

and joint Bayesian CS, that significantly improved reconstruction 

quality of multi-contrast images from undersampled data.

 While joint Bayesian method reduced reconstruction errors by 

up to 4 times relative to a popular CS algorithm1, current 

implementation suffers from long reconstruction times.

 M-FOCUSS is a notable candidate that trades off reconstruction 

quality and processing speed.  

48 [1] Lustig et al. MRM 2007
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 Quantitative Susceptibility Mapping (QSM) aims to quantify 

tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement1

Estimation of venous blood oxygenation2

Quantification of tissue iron concentration3

501 Duyn JH et al., PNAS 2007     2 Fan AP et al., ISMRM 2010     3 Liu T et al., ISMRM 2010

Quantitative Susceptibility Mapping (QSM)



 Quantitative Susceptibility Mapping (QSM) aims to quantify 

tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement1

Estimation of venous blood oxygenation2

Quantification of tissue iron concentration3

 Estimation of the susceptibility map χ from the unwrapped 

phase φ involves solving an inverse problem, 

51

1-  F DF

: Discrete Fourier Transform matrixF

: susceptibility kernel in -spaceD k

0

: normalized field map
TE B







 

Quantitative Susceptibility Mapping (QSM)

1 Duyn JH et al., PNAS 2007     2 Fan AP et al., ISMRM 2010     3 Liu T et al., ISMRM 2010



 Quantitative Susceptibility Mapping (QSM) aims to quantify 

tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement1

Estimation of venous blood oxygenation2

Quantification of tissue iron concentration3

 Estimation of the susceptibility map χ from the unwrapped 

phase φ involves solving an inverse problem, 

52

Quantitative Susceptibility Mapping (QSM)

1 Duyn JH et al., PNAS 2007     2 Fan AP et al., ISMRM 2010     3 Liu T et al., ISMRM 2010

measured to be estimated

1-  F DF



Quantitative Susceptibility Mapping (QSM)

 Quantitative Susceptibility Mapping (QSM) aims to quantify 

tissue magnetic susceptibility with applications such as,

Tissue contrast enhancement1

Estimation of venous blood oxygenation2

Quantification of tissue iron concentration3

 Estimation of the susceptibility map χ from the unwrapped 

phase φ involves solving an inverse problem, 

 The inversion is made difficult by            

zeros on a conical surface in                                 

susceptibility kernel D
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Regularized Inversion for QSM
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Regularized Inversion for QSM
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 Solving for χ by convolving with the inverse of D is not possible, 

as it diverges along the magic angle

1-  FD F

diverges to ∞  



Regularized Inversion for QSM
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 Solving for χ by convolving with the inverse of D is not possible, 

as it diverges along the magic angle

 Spatial details that have frequency components at the magic 

angle lose conspicuity in the field map δ

1
F DF

Forward 

transform

+ noise

sagittal

view
sagittal

view

δ



Regularized Inversion for QSM
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 Solving for χ by convolving with the inverse of D is not possible, 

as it diverges along the magic angle

 Spatial details that have frequency components at the magic 

angle lose conspicuity in the field map δ

 We propose to use regularization to facilitate the inversion  

1
F DF

Forward 

transform

+ noise δ
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 3D GRE acquisition with phased array coils and body coil

 Normalize each channel image with the body coil 

 Fit 2nd order polynomials to the magnitude of the normalized 

images → magnitude of the coil sensitivities
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 3D GRE acquisition with phased array coils and body coil

 Normalize each channel image with the body coil 

 Fit 2nd order polynomials to the magnitude of the normalized 

images → magnitude of the coil sensitivities

 Phase of the normalized images → phase of the coil sensitivities
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QSM with 

FOCUSS

Coil 

Combination

Brain Mask 

Extraction (BET)

Phase Unwrapping

(PRELUDE)

Background Phase 

Removal

Phase-aware Coil Combination

magnitude of combined image phase of combined image

 3D GRE acquisition with phased array coils and body coil

 Normalize each channel image with the body coil 

 Fit 2nd order polynomials to the magnitude of the normalized 

images → magnitude of the coil sensitivities

 Phase of the normalized images → phase of the coil sensitivities

 Final image is obtained by least-squares coil combination



1 Smith SM, Hum. Brain Mapp. 2002

 Brain mask was generated with the FSL Brain Extraction Tool1
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 Brain mask was generated with the FSL Brain Extraction Tool1

 Phase unwrapping was done with the FSL PRELUDE2
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Phase Unwrapping

(PRELUDE)

Background Phase 

Removal

Brain Mask Extraction & Phase Unwrapping

1 Smith SM, Hum. Brain Mapp. 2002     2 Jenkinson M, MRM 2003 -30 rad 30 rad



1 Liu T et al., ISMRM 2010

 The background phase was estimated with the Effective 

Dipole Fitting method1
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1 Liu T et al., ISMRM 2010

 The background phase was estimated with the Effective 

Dipole Fitting method1

 Subtracting the estimated background from the initial field map 

gives the tissue field map 
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 The tissue field map δ is related to the susceptibility 

distribution χ via
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 The tissue field map δ is related to the susceptibility 

distribution χ via

 Multiplying both sides with VxF
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 The tissue field map δ is related to the susceptibility 

distribution χ via

 Multiplying both sides with VxF

 This corresponds to taking the spatial gradient along the x axis
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   x x
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1-  F DF

x x
 V F V DF

   2   1 j / n

x x
, e

    V Vwhere is a diagonal matrix with

QSM with 
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1 Gorodnitsky IF et al., IEEE T. Signal Process. 1997

 The gradient of the tissue field map δ is related to the gradient 

of the susceptibility distribution χ via

 We solve for         with the FOCUSS algorithm1
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1 Gorodnitsky IF et al., IEEE T. Signal Process. 1997

 The gradient of the tissue field map δ is related to the gradient 

of the susceptibility distribution χ via

 We solve for         with the FOCUSS algorithm1
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1 Gorodnitsky IF et al., IEEE T. Signal Process. 1997

 The gradient of the tissue field map δ is related to the gradient 

of the susceptibility distribution χ via

 We solve for         with the FOCUSS algorithm1
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 We expect the susceptibility distribution to share similar spatial 

gradients as the magnitude image.
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 We expect the susceptibility distribution to share similar spatial 

gradients as the magnitude image.

 To impose this prior, we modify the update equations as,

 
2 2

22
argmin 

k x prior k
q

q q q    F DFW W
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 We expect the susceptibility distribution to share similar spatial 

gradients as the magnitude image.

 Expressed in terms of        , 
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 We expect the susceptibility distribution to share similar spatial 

gradients as the magnitude image.

 Expressed in terms of        , 
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 After estimating the spatial gradients along x, y and z axes, 

the susceptibility distribution that matches these is found by 

solving a least squares problem,
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matching gradients data consistency

 After estimating the spatial gradients along x, y and z axes, 

the susceptibility distribution that matches these is found by 

solving a least squares problem,
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QSM result: FOCUSS-QSM with magnitude prior
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 Starting from the noisy field map δ, FOCUSS-QSM with 

magnitude prior yielded a susceptibility map with 1.3 % 

RMSE relative to true χ.
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QSM result: FOCUSS-QSM with magnitude prior
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 The reconstructed susceptibility map managed to recover the 

vessel at the magic angle, which was virtually lost in the field 

map.
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-0.3 ppm 0.3 ppm

In vivo QSM result: FOCUSS-QSM with magnitude prior

 3D GRE acquisition at 3T 

 32 channel receive array

 0.94x0.94x2.5 mm3 resolution

 TE: 20 ms
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-0.3 ppm 0.3 ppm

In vivo QSM result: FOCUSS-QSM with magnitude prior

dentates: 0.062 ppm

red nuclei: 0.045 ppm

subs. nigra: 0.105 ppm

putamen: 0.032 ppm

caudate: 0.032 ppm

glob. pallidus: 0.123 ppm

x 0.01 ppm, relative to χCSF

Structure Δχ [ppm]

Globus Pallidus 12.3

Substantia Nigra 10.5

Dentate 6.2

Red Nucleus 4.5

Putamen 3.2

Caudate 2.3



In vivo QSM result: FOCUSS-QSM with magnitude prior
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Vessels are less apparent 

without the magnitude prior
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-0.3 ppm 0.3 ppm

In vivo QSM result: FOCUSS-QSM with a prior
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Corresponding Tissue Field Map:

-0.1 ppm 0.1 ppm
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In vivo QSM result with magnitude prior in k-space:

kx

ky
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kz
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In vivo QSM result with magnitude prior in k-space:
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ky
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Potential drawbacks of FOCUSS-QSM

 Computation time: 

 Dipole fitting for background removal ≈ 2 hours

 FOCUSS-QSM ≈ 1 hours

 Total processing time ≈ 3 hours for data of size [256x256x64]
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Potential drawbacks of FOCUSS-QSM

 Computation time: 

 Dipole fitting for background removal ≈ 2 hours

 FOCUSS-QSM ≈ 1 hours

 Total processing time ≈ 3 hours for data of size [256x256x64]

 Solution:

 Both algorithms solve Least Squares problems, Graphics Processing 

Card (GPU) implementation will greatly enhance the performance
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 Starting with a multi-coil 3D GRE acquisition, we outlined   

coil combination and background phase elimination methods 

that yielded the tissue field map.

 We introduced a Quantitative Susceptibility Mapping 

algorithm that makes use of the magnitude image to facilitate 

the kernel inversion.
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Conclusion
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L1 Regularized Susceptibility Inversion

 Again, we are seeking the susceptibility map that matches 

the observed tissue phase,

 The susceptibility values are tied to the paramagnetic 

properties of the underlying tissues; hence they vary 

smoothly across space within anatomical boundaries.

 Based on this, we model the susceptibility map to be 

approximately piece-wise constant,

 And formulate this belief by invoking sparsity inducing L1 

norm on the spatial gradients of χ
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Find  χ such that  δ = F−1DF χ



L1 Regularized Susceptibility Inversion

 We solve for the susceptibility distribution with a convex 

program,

 We call this method L1-QSM, for which λ serves as a 

regularization parameter that adjusts the smoothness of the 

solution

 This is essentially the same formulation as FOCUSS-QSM, 

but is less sophisticated as magnitude information is not used 
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χtissue = argminχ ||δ − F −1DF χ||  + λ ( ||∂x χ||1 + ||∂y χ||1 + ||∂z χ||1 )
2

2



Tissue iron deposition in young and elderly subjects 

 Tissue susceptibility is a sensitive marker of iron 

concentration, however it is partially influenced by myelin, 

proteins etc.

 In this study, we used L1-QSM to test the hypothesis that, 

iron deposition in striatal and brain stem nuclei would be 

greater in older than younger adults

 Subjects:

11 younger adults (age = 24.0 ± 2.5) and

12  elderly  adults (age = 74.4 ± 7.6)

 Data:

Susceptibility Weighted 3D SPGR at 1.5 T
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Average L1-QSM Result for the Elderly 

Average L1-QSM Result for the Young
0.16 ppm−0.1 ppm



Average L1-QSM Result for the Elderly 

Average L1-QSM Result for the Young
0.16 ppm−0.1 ppm

Striatal ROIs Brain Stem ROIs



Average L1-QSM Result for the Elderly 

Average L1-QSM Result for the Young

Elderly caudate nucleus: 0.059 ppm 

Young caudate nucleus: 0.023 ppm 

t-test result: p < 0.0001

significant



Average L1-QSM Result for the Elderly 

Average L1-QSM Result for the Young

Elderly globus pallidus: 0.120 ppm 

Young globus pallidus: 0.069 ppm 

t-test result: p < 0.0001

significant



Average L1-QSM Result for the Elderly 

Average L1-QSM Result for the Young

Elderly putamen: 0.095 ppm 

Young putamen: 0.024 ppm 

t-test result: p < 0.0001

significant



Average L1-QSM Result for the Elderly 

Average L1-QSM Result for the Young

Elderly red nucleus: 0.091 ppm 

Young red nucleus: 0.030 ppm 

t-test result: p = 0.0008

significant



Average L1-QSM Result for the Elderly 

Average L1-QSM Result for the Young

Elderly substantia nigra: 0.055 ppm 

Young substantia nigra: 0.023 ppm 

t-test result: p = 0.0178

significant



L1-QSM vs. Postmortem

 L1-QSM results correlate well with published postmortem 

results1, with  Rho = 0.881, p = 0.0198

102 1 Hallgren, B. and Sourander, P. 1958, Journal of Neurochem



L1-QSM vs. FDRI

 Field-Dependent Relaxation Rate Increase (FDRI)1 is another 

iron quantification that requires data acquisition at two 

different main field strengths.

 L1-QSM is strongly correlated with FDRI results,               

with Rho = 0.976, p = 0.0098 

103 1 Bartzokis, G. et al., 1993, Magn Res Med 



L1-QSM vs. FDRI

 L1-QSM requires data acquisition at a single main magnetic 

field strength, and has much higher spatial resolution, 

enabling iron quantification in vessels.
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(a) Over-regularized, λ = 3·10-3

(c) Optimally regularized, λ = 10-3

Subject 2020
-0.2 to 0.2 ppm, λ = 
10-3(b) Under-regularized, λ = 3·10-4 0.2 ppm−0.2 ppm

Effect of regularization parameter λ


