

Rapid QSM Acquisition with Wave-CAIPI

B. Bilgic^{1,2}, B. A. Gagoski^{2,3}, S.F. Cauley^{1,2}, A.P. Fan^{1,4}, J.R. Polimeni^{1,2}, P.E. Grant^{2,3}, L.L.Wald^{1,2,5}, K. Setsompop^{1,2}

1 Martinos Center for Biomedical Imaging, Charlestown, MA,

- 2 Harvard Medical School, Boston, MA
- 3 Boston Children's Hospital, Boston, MA
- 4 Massachusetts Institute of Technology, Cambridge, MA
- 5 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA

Wave-CAIPI accelerated QSM

- Quantitative Susceptibility Mapping (QSM) relies on phase data from 3D Gradient Echo (GRE)
- Long echo times (TE ≈ 30ms) are required for phase contrast → TR ≥ 30ms very long scan time

0.5 mm isotropic whole brain @ 7T in 5 minutes Wave-CAIPI with 9-fold acceleration (TE/TR=20/30 ms)

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

2D-CAIPI slice shift:

Effect of slice shift in image space

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

> Bunch Phase Encoding (BPE)²

1. Breuer F. et al, MRM 2006 2. Moriguchi H. et al, MRM 2006

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

> Bunch Phase Encoding (BPE)²

Effect of G_v in image space

Bunch Phase: Zigzag G_y

Wave-CAIPI Sampling

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Wave-CAIPI: 2D CAIPI + BPE in 2 directions

Spread aliasing in 3D to take full advantage of 3D coil profiles

1. Breuer F. et al, MRM 2006 2. Moriguchi H. et al, MRM 2006

- Wave-CAIPI = BPE G_v + BPE G_z + CAIPI 2D
- View BPE G_v as <u>extra modulation</u> rather than modifying k-space traj.

Hybrid Space (iDFT without gridding)

From signal equation:

$$wave(x, y, z) = \sum_{k_x} e^{i2\pi x k_x/N} \cdot e^{-i2\pi W_y(k_x)y} \cdot \sum_x e^{-i2\pi x k_x/N} \cdot img(x, y, z)$$

$$wave(x, y, z) \quad \text{Wave image}$$

$$img(x, y, z) \quad \text{Underlying magnetization}$$

$$W_y(k_x(t)) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) d\tau \quad \text{k-space trajectory}$$

Image Space

Hybrid Space (iDFT without gridding)

From signal equation:

From signal equation:

$$wave(x, y, z) = F^{-1} \cdot e^{-i2\pi W_y(k_x)y} \cdot F \cdot img(x, y, z)$$

Point Spread Function (PSF)

No need for gridding, simple DFT

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => small Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(x, y, z) = F^{-1} \cdot e^{-i2\pi W_y(k_x)y} \cdot F \cdot img(x, y, z)$$

$$Psf(y)$$

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

 $wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$

$$\begin{bmatrix} F^{-1} \cdot \operatorname{Psf}(y_1) \cdot F \\ F^{-1} \cdot \operatorname{Psf}(y_2) \cdot F \end{bmatrix} \cdot \begin{bmatrix} \operatorname{row}(y_1) \\ \operatorname{row}(y_2) \end{bmatrix} = \begin{bmatrix} \operatorname{wave}(y_1) + \operatorname{wave}(y_2) \end{bmatrix}$$

=> intuition on why Wave improves reconstruction

 $wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$ $F^{-1} \cdot Psf(y_1) \cdot F \cdot C(y_1)$ $F^{-1} \cdot Psf(y_2) \cdot F \cdot C(y_2)$ $\left[\begin{array}{c} row(y_1) \\ row(y_2) \end{array} \right] = \left[wave(y_1) + wave(y_2) \right]$

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$$

$$\begin{bmatrix} F^{-1} \cdot Psf(y_1) \cdot F \cdot C_1(y_1) \\ \dots \\ F^{-1} \cdot Psf(y_2) \cdot F \cdot C_{32}(y_2) \end{bmatrix} \cdot \begin{bmatrix} row(y_1) \\ row(y_2) \end{bmatrix} = \begin{bmatrix} coil_1 \\ \dots \\ coil_{32} \end{bmatrix}$$
Encoding matrix

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$$

$$F^{-1} \cdot Psf(y_1) \cdot F \cdot C_1(y_1)$$

$$\dots$$

$$F^{-1} \cdot Psf(y_2) \cdot F \cdot C_{32}(y_2)$$

$$F^{-1} \cdot Psf(y_2) \cdot F \cdot C_{32}(y_2)$$

Solve for each set of collapsed rows iteratively using LSQR

Wave-CAIPI reconstruction

- \Rightarrow Wave gradients G_v and G_z create position dependent PSF
- \Rightarrow CAIPI 2D shift aliasing pattern
- \Rightarrow These are accounted for when generating the PSF-based Encoding matrices \Rightarrow Ex: R = 3x3
 - \Rightarrow each Encoding matrix corresponds to 9 rows of the image
 - \Rightarrow grouping of rows is determined by CAIPI 2D
 - \Rightarrow amount of spreading in each row determined by G_v and G_z

Artifact Quantification

Artifact Quantification

Point Spread Function within single voxel

In Vivo Acquisition Comparison

- Compare Wave-CAIPI and conventional SENSE
- Acquire **fully-sampled** data, then accelerate by R = 3x3
- Compute root-mean-square error (RMSE) and 1/g-factor maps (retained SNR)

In Vivo Acquisition Comparison

- Compare Wave-CAIPI and conventional SENSE
- Acquire **fully-sampled** data, then accelerate by R = 3x3
- Compute root-mean-square error (RMSE) and 1/g-factor maps (retained SNR)
- In vivo acquisitions:
 - At 3T and 7T
 - 1x1x2 mm resolution
 - 224x224x120 FOV

3 Tesla, R=3x3, 1x1x2 mm³, T_{acq}=38s

TR/TE = 26/13.3 ms

TR/TE = 27/10.9 ms

Accelerated Acquisition Comparison

- Compare Wave-CAIPI, 2D-CAIPI¹ and Bunch Phase²
- Acquire R = 3x3 accelerated data
- Compute 1/g-factor maps (retained SNR)

Accelerated Acquisition Comparison

- Compare Wave-CAIPI, 2D-CAIPI¹ and Bunch Phase²
- Acquire R = 3x3 accelerated data
- Compute 1/g-factor maps (retained SNR)
- In vivo acquisitions:
 - At 3T and 7T
 - 1x1x1 mm isotropic resolution
 - Acquisition time: 2.3 min
 - 240x240x120 FOV

R=3x3 @ 3 Tesla, 1 mm iso, T_{acq}=2.3min 2D-CAIPI G_{max}=1.82 Κz κx/ Ку G_{mean}=1.22

Quantitative Susceptibility Mapping (QSM)

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem¹,

F: Discrete Fourier Transform **D**: susceptibility kernel $\delta = \varphi/(\gamma \cdot TE \cdot B_0)$: normalized field map

Quantitative Susceptibility Mapping (QSM)

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map $\pmb{\chi}$ from the unwrapped phase $\pmb{\varphi}$ involves solving an inverse problem,

$\delta = F^{-1} D F \chi$

The inversion is made difficult by zeros in susceptibility kernel D

$$D = \frac{1}{3} - \frac{k_z^2}{k_x^2 + k_y^2 + k_z^2}$$

Quantitative Susceptibility Mapping (QSM)

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map $\pmb{\chi}$ from the unwrapped phase $\pmb{\varphi}$ involves solving an inverse problem,

$\delta = F^{-1} D F \chi$

- The inversion is made difficult by zeros in susceptibility kernel D
- Undersampling is due to physics Not in our control

Regularized Susceptibility Inversion

- Use prior knowledge to estimate susceptibility map in the presence of undersampling
- Prior: Susceptibility is tied to the magnetic properties of the underlying tissue; hence it should vary smoothly within anatomical boundaries.
- Employ regularization that encourages smoothness within tissues, but avoids smoothing across boundaries.

L2 Regularized Susceptibility Inversion

We solve for the susceptibility distribution with a convex program,

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \lambda \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

Data consistency Regularizer

L2 Regularized Susceptibility Inversion

We solve for the susceptibility distribution with a convex program,

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \lambda \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

G: Spatial gradient operator in 3D

- M: Binary mask derived from magnitude image, prevents smoothing across edges

 - λ : Determines the amount of smoothness

L2 Regularized Susceptibility Inversion

We solve for the susceptibility distribution with a convex program,

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \,\boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \lambda \cdot \left\| \mathbf{M} \mathbf{G} \,\boldsymbol{\chi} \right\|_{2}^{2}$$

Optimizer given by the solution of:

$$(\mathbf{F}^{-1}\mathbf{D}^{2}\mathbf{F} + \boldsymbol{\lambda} \cdot \mathbf{G}^{T}\mathbf{M}\mathbf{G})\boldsymbol{\chi} = \mathbf{F}^{-1}\mathbf{D}^{T}\mathbf{F}\boldsymbol{\delta}$$

Large linear system, solve rapidly with Preconditioned Conjugate Gradient¹

Wave-CAIPI accelerated QSM

- Susceptibility mapping relies on phase signal from a 3D Gradient Echo (GRE) acquisition
- Long echo times (TE≈30ms) are required for phase evolution to improve SNR
- This constraint on repetition time (TR) further increases QSM data acquisition time:

Whole-brain 3D GRE at 1mm³ resolution:

 $\begin{array}{c} 240x240x120 \text{ FOV} \\ \text{TR} = 40 \text{ ms} \end{array} \begin{array}{c} \textbf{T}_{acq} = \textbf{19 min if fully-sampled} \end{array}$

Wave-CAIPI allows rapid QSM acquisition:

$$T_{acq} = 2.3 \text{ min at } R=3\times3$$

Wave-CAIPI accelerated QSM

- Compare in vivo phase and QSM from Wave-CAIPI, 2D-CAIPI and Bunch Phase Encoding:
 - At 3T and 7T
 - -R = 3x3 acceleration, scan time = 2.3 min
 - 1 mm isotropic resolution
- Phase Processing:
 - Laplacian unwrapping¹ and
 - SHARP filtering for background removal²
- Susceptibility Inversion:
 - Fast L2-regularized inversion³

14 seconds

32 seconds

Bunch Encoding

7 Tesla, R=3x3, 0.5 mm iso, 5.1 min acq

Summary

- Propose Wave-CAIPI acquisition/reconstruction scheme for highly accelerated 3D imaging
- Wave-CAIPI offers 2-fold improvement in g-factor and image artifact penalties compared to 2D-CAIPI and Bunch Phase Encoding

Summary

- Propose Wave-CAIPI acquisition/reconstruction scheme for highly accelerated 3D imaging
- Wave-CAIPI offers 2-fold improvement in g-factor and image artifact penalties compared to 2D-CAIPI and Bunch Phase Encoding
- Deployed in GRE imaging, Wave-CAIPI allows 9-fold acceleration with ~perfect SNR retention at 3T and 7T
- Combined with fast phase and susceptibility processing methods, it enables QSM at 1 mm resolution in 2.3 min

Thank you for your attention