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Wave-CAIPI for 3D-GRE

Wave-CAIPI modifies 3D GRE trajectory to followa corkscrew along each readout line [1]

For accelerated acquisitions, this spreads the aliasing in all 3D dimensions to
substantially improve parallel imaging

Acquisition has the same off-resonance characteristic as Normal GRE (voxel shift in
readout), and recon is fully Cartesian

Normal GRE Wave-CAIPI
Wave-CAIPI trajectory two voxels collapse aliasing voxels are further apart

Aliasing voxels are spread out to increase
the variation in coil sensitivity profiles:

Improved G-Factor

R=2 acceleration in Ky

[1] B Bilgic, MRM’'14



Compressed Sensing Wave

Recently introduced CS-Wave [1] employed Poisson sampling and Wavelet penalty to
combine Compressed Sensing with Wave encoding

We propose optimized CS-Wave with
Efficient ADMM reconstruction

Total Variation regularization

Tailored data-sampling
When combined, these double the improvementachieved by the previous CS-Wave

Providing 20% RMSE reduction over Wave-CAIPI at 15-fold accl

[1] AT Curtis et al, ISMRM’15



Compressed Sensing Wave

Recently introduced CS-Wave [1] employed Poisson sampling and Wavelet penalty to
combine Compressed Sensing with Wave encoding

We propose optimized CS-Wave with
Efficient ADMM reconstruction

Total Variation regularization

Tailored data-sampling

Combining CS-Wave with Simultaneous MultiSlice (SMS) Echo-Shift strategy [2] further
increases the acceleration to 30-fold (15x2)

Enabling Quantitative Susceptibility Mapping (QSM) from 3 head orientationsat long TE
and 1.5 mm iso in 72 sec (24 sec / orientation)

[1] AT Curtis et al, ISMRM’15
[2] HYe et al ISMRM’16 p3246



Wave Recon: Forward Model

Despite followinga non-Cartesian trajectory, Wave encoding can be expressed in
Cartesian space through pointspread function (psf):

wave(x,y)=pst(x,y) ® m(x,y)

Underlying Image Wave Image (iDFT without gridding)
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Wave Recon: Forward Model

Despite followinga non-Cartesian trajectory, Wave encoding can be expressed in
Cartesian space through pointspread function (psf):

wave(x,y) = FXH -Pst(k,,y) F -m(x,y)

No need for gridding, simple DFT

Underlying Image Wave Image (iDFT without gridding)
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Wave Recon: Forward Model

Extend to 3D using both G, and G, sinusoidal gradient waveforms:

wave(x,y,z) = FXH -Pst(k_,y,2) F -m(x,y,2)




Wave Recon: Forward Model

And go to 3D k-space by applying DFT to both sides:

E,, -wave(x,y,z)=F,, -Psf(k,,y,2)-F -m(x,y,2)

Xy




Wave Recon: Forward Model

And go to 3D k-space by applying DFT to both sides:

k=F, Pst-F -m




Wave Recon: Forward Model

Include coil sensitivities and undersampling mask to obtain the forward SENSE model

k=M-F,,-Psf-F, -S-m




Wave Recon: Forward Model

Include coil sensitivities and undersampling mask to obtain the forward SENSE model

k=M-E-m

encoding E=F -Pst-F -S



Efficient CS-Wave Recon

Regularized least squares to incorporate Compressed Sensing:

1/2Hk—M-E-mH§ + A|R-m|




Efficient CS-Wave Recon

For efficient optimization, we adopt ADMM [1,2] and introduce auxiliary variables for
data consistency and regularization terms:

1/2Hk—M-E-mHz + A|R-m|

c=E-m r=R-m

This allows us to separate the difficult 3D optimization probleminto smaller

subproblems that are solved in closed form for C and 7

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’'09



Efficient CS-Wave Recon

For efficient optimization, we adopt ADMM [1,2] and introduce auxiliary variables for
data consistency and regularization terms:

1/2Hk—M-E-mH§ + A|R-m|

c=E-m r=R-m

And the image update is found by a simple linear combination of data consistency and
regularization

(a-S*+B-R*)ym=a-E"(c-d)+B-R"(r-d)

d. & d : dual variables

a & f: Lagrange parameters

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’'09



Efficient CS-Wave Recon

For efficient optimization, we adopt ADMM [1,2] and introduce auxiliary variables for
data consistency and regularization terms:

1/2Hk—M-E-mH§ + A|R-m|

c=E-m r=R-m

And the image update is found by a simple linear combination of data consistency and
regularization: closed-form for Wavelet

(a-S*+B-R*)ym=a-E"(c-d)+B-R"(r-d)

R* =1 for Wavelet

S? = SoS of sensitivities

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’'09



Efficient CS-Wave Recon

For efficient optimization, we adopt ADMM [1,2] and introduce auxiliary variables for
data consistency and regularization terms:

1/2Hk—M-E-mH§ + A|R-m|

c=E-m r=R-m

And the image update is found by a simple linear combination of data consistency and
regularization: closed-form for Wavelet

m=(a-8*+ -1 -[a- B (c-d )+ f-R" (r-d)]

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’'09



Efficient CS-Wave Recon

For efficient optimization, we adopt ADMM [1,2] and introduce auxiliary variables for
data consistency and regularization terms:

1/2Hk—M-E-mH§ + A|R-m|

c=E-m r=R-m

And the image update is found by a simple linear combination of data consistency and
regularization: Preconditioned Conjugate Gradient for Total Variation

(a-S*+B-R*)ym=a-E"(c-d)+B-R"(r-d)

diag(R*) =6-1 for TV since Laplacian

[1] S Boyd et al, Found Trends Mach Learn’10
[2] T Goldstein et al, SIAM J Imaging Sci’'09



Wave encoding with R=15 accl @ 7T

hybrid sampling

Proposed: CS-Wave

Res =1x1x2 mm3

FOV =224x222x120 mm?3 tight

TE/TR =10.9/27 ms

ESPIRIT [1] sensitivities from 16x16x16 points

Hybrid sampling [2]: Center 25% w/ R=3x3-Ca|p| ]-Total R=15fold
Outer 75% w/ VD Poisson

Tocq = 25 sec
[1] M Ueckeret al MRM'14
[2] KSung et al MRM'13



Wave encoding with R=15 accl @ 7T

Proposed: CS-Wave hybrid sampling

g ‘I‘J'I-

10.2% RMSE Recon 1.8 min ol
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Wave encoding with R=15 accl @ 3T

Proposed: CS-Wave

Tocq = 24 sec
TE/TR=13.3/26 ms



Phase & QSM with R=15 accl @ 7T

Proposed: CS-Wave

Tissue Phase
V-SHARP [1,2]

-0.038 0.043 ppm

Susceptibility Map
Single-Step TGV [3]

[3] | Chatnuntawech et al ISMRM’16, p.869
Thu 10:30 Sparse Road to Quantitative Imaging



Phase & QSM with R=15 accl @ 7T

Wave-CAIPI

Tissue Phase

-0.038 0.043 ppm

Susceptibility Map
Single-Step TGV [3]

[3] | Chatnuntawech et al ISMRM’16, p.869
Thu 10:30 Sparse Road to Quantitative Imaging



Phase & QSM with R=15 accl @ 3T

Proposed: CS-Wave

Tissue Phase

-0.038 0.043 ppm

Susceptibility Map
Single-Step TGV [3]

[3] | Chatnuntawech et al ISMRM’16, p.869
Thu 10:30 Sparse Road to Quantitative Imaging



Phase & QSM with R=15 accl @ 3T

Wave-CAIPI

Tissue Phase

-0.038 0.043 ppm

Susceptibility Map
Single-Step TGV [3]

[3] | Chatnuntawech et al ISMRM’16, p.869
Thu 10:30 Sparse Road to Quantitative Imaging



Echo-Shift

For SWI and QSM, long TE is desired to build up phase and T," contrast, which leads to
long TR and acquisition time

Echo-shift exploits the unused sequence time and interleaves multiple echos within a
single TR and improves efficiency in 2D [1] or 3D [2] acquisitions

Echo-shift has also been used for fMRI (PRESTO) [3], and combined with (SMS) [4] for
further acceleration for 2D imaging

[1] CTW Moonen etal MRM’92

[2] YJ Ma etal MRM’15

[3] G Liuet alMRM'93

[4] R Boyacioglu etal SMS Workshop’'15



Multi-Slab Echo-Shift for 3D imaging

Conventional 3D-GRE: substantial unused time due to late TR

Conventional

Slab Select 3D encoding
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Multi-Slab Echo-Shift for 3D imaging

Multi-Slab Echo-Shift: add a second readout and crusher gradients for faster encoding

Multi-Slab
Slab 1 Slab 2 Echo-Shift
RF —= — . J‘/}’V '
Gsllce_D l \—/ I_\

acquisition
Slab 1 Slab 2
|
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Slab boundary artifact

Acceleration in head-foot more difficult since distance between aliasing voxels reduced
by half



SMS Echo-Shift for 3D imaging

SMS Echo-Shift [1]: excite and encode comb slice groups

MultiBand RF SMS
Odd Slc Even Slc Echo-Shift
RF —= — . J‘V[o\ﬁ '
Gslice _D l \—/ a

acquisition
Odd Slc Even Slc
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[1] H Ye et al ISMRM’16 p3246



Echo-Shift CS-Wave with R=15X%2 accl @ 3T

sy T
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1.5 mm iso
Long TE = 35 ms (TR=47 ms)
Tocq = 24 sec



Echo-Shift CS-Wave with R=15X%2 accl @ 3T
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Combine information from 3 head orientationsto solve QSM inverse problem [1]

[1] T Liu et al MRM’09



Echo-Shift CS-Wave with R=15X%2 accl @ 3T
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QSM from 3 orientations: T, = 72sec




Conclusion

We proposed optimized CS-Wave with efficient reconstruction and tailored data-
sampling

SMS Echo-Shift strategy utilizes the unused sequence time for extra encoding

Combining CS-Wave with SMS Echo-Shift permits 30-fold (15x%2) acceleration

This enables rapid SWI and QSM acquisition at long TE required for optimal contrast

Questions / Comments:
berkin@nmr.mgh.harvard.edu

Support: NIH R2Z4MH106096, RO1EB020613, RO1EBO17337, UO1HDO087211



