

Calibrationless Parallel Imaging in Multi Echo/Contrast Data

B Bilgic^{1,2}, B Zhao^{1,2}, I Chatnuntawech³, LL Wald^{1,2}, K Setsompop^{1,2}

1 Martinos Center, Charlestown, MA, USA 2 Harvard Medical School, Boston, MA, USA 3 National Nanotechnology Center, Pathum Thani, Thailand

Declaration of Financial Interests or Relationships

Speaker Name: Kawin Setsompop

I have the following financial interest or relationship(s) to disclose with regard to the subject matter of this presentation:

- Licensing agreements with Siemens, GE, Phillips and Samsung
- Research support from Siemens

Calibrationless Parallel Imaging

- Conventional parallel imaging requires auto-calibration signal (ACS) to estimate sensitivities or k-space kernels, which increases scan time
- Inconsistency due to motion or physiological noise in ACS may lead to artifacts [1]
- Dynamic, spectroscopic and non-Cartesian imaging, acquiring ACS can be challenging or not possible at all
- Emerging techniques use low-rank modeling [2-5] or jointly estimate sensitivities and images [6-8]

to reduce/eliminate dependence on calibration.

[3] PJ Shin, MRM'14

[5] KH Jin, IEEE TCI'16

[7] F Knoll, MRM'12

[2] JD Trzasko, ASILOMAR'11

[4] JP Haldar, MRM'16

[6] M Uecker, MRM'08

[8] L Ying, MRM'07

Nonlinear Inversion

We jointly recon sensitivities & image content by extending Nonlinear INVersion (NLINV)

[1,2]

Under-determined even when fully-sampled

Joint Nonlinear Inversion

We jointly recon sensitivities & image content by extending Nonlinear INVersion (NLINV)

[1,2]

Adding more echos/contrasts improve conditioning

Allows *Calibrationless* recon

Joint Nonlinear Inversion

We jointly recon sensitivities & image content by extending Nonlinear INVersion (NLINV)[1,2]

Complementary sampling

initial guess

= reduced aliasing

Calibrationless Joint NLINV

- Calibrationless recon is made possible by:
 - leveraging shared sensitivities across echos/contrasts to improve conditioning
 - ii. employing Joint TV to exploit shared edge structures and sparsity
 - ii. complementary sampling that improves collective k-space coverage and provides an image with *reduced aliasing* for initialization

Solve for images ho_1 ... ho_M

and sensitivities

$$c_1 \dots c_K$$

$$F_i \left(c_j \cdot \rho_i \right) = y_{ij}$$
 undersampled sens j image i k-space image i coil j

Solve for images ho_1 ... ho_M

and sensitivities

 $c_1 \dots c_K$

Linearize the nonlinear operation around an initial guess $oldsymbol{x}^{oldsymbol{n}}$

$$N(x^n + dx) \approx N(x^n) + DN(x^n)dx = y$$
constant Jacobian

Solve for the update

$$dx = egin{pmatrix} d
ho_1 \ dash d
ho_M \ dc_1 \ dash dc_K \end{pmatrix}$$

We constrain the sensitivities to be smooth via Sobolev norm [1]

$$\min_{dx} \|N(x^n) + DN(x^n)dx - y\|_2^2$$
data consistency

$$W = (1 + k^2)^8 \cdot F$$

$$+ \alpha^n ||W(c^n + dc)||_2^2$$
Penalize high freq in k-space
Sobolev norm

[1] M Uecker, MRM'08

• We enforce joint sparsity in edge structures with ℓ_{21} penalty

$$\min_{dx} \|N(x^{n}) + DN(x^{n})dx - y\|_{2}^{2}$$

$$+\alpha^{n} \|W(c^{n} + dc)\|_{2}^{2}$$

$$+\beta^{n} \|\nabla(\rho^{n} + d\rho)\|_{21}$$
Joint TV

Each Gauss-Newton step is minimized using Nonlinear Conjugate Gradient [1]

$$\min_{dx} \|N(x^n) + DN(x^n)dx - y\|_2^2$$

$$+ \alpha^n \|W(c^n + dc)\|_2^2$$

$$+ \beta^n \|\nabla(\rho^n + d\rho)\|_{21}$$

Reduce $lpha^n$ and eta^n 2-fold in each step to avoid over-smoothing

Calibrationless Joint NLINV

- We demonstrate calibrationless recon for:
 - i. Multi-echo spin-echo
 - ii. Multi-echo MPRAGE [1]
 - iii. Phase-cycled balanced SSFP
 - v. Multi-contrast protocol

Multi-Echo Spin-Echo, Calibrationless, Acceleration R=2×2

SAKE 28.5% RMSE

- 12-chan reception
- FOV = 240×180mm², slice thickness = 3mm
- \star Mtx = 256×208

Multi-Echo Spin-Echo, Calibrationless, Acceleration R=2×2

SAKE 28.5% RMSE

Proposed: Joint NLINV

Poisson sampling

Recon time: 73 min

100 iter

Window= 6×6

Threshold = 1.4

Uniform sampling

Recon time: 21 min

9 Newton iter

$$\alpha_0 = 0.001$$

 $\beta_0 = 0.1$

Multi-Echo MPRAGE, Calibrationless, Acceleration R=2×2

NLINV: single echo TE=1.7ms

67.4% RMSE

32-chan reception

1 mm isotropic BW = 651Hz/pixel ♦ Mtx = 256×240×192

6.4% RMSE SAKE Recon time: 122 min Poisson sampling

Window= 6×6

Threshold = 1.5

Proposed: Joint NLINV 4.9% RMSE

Recon time: 25 min $\alpha_0 = 0.001$ Uniform sampling $\beta_0 = 0.1$

Phase-Cycled bSSFP, Calibrationless, Acceleration R=2×2

Proposed: Joint NLINV

3.3% RMSE

32 chan sens

φ=π

- 32-chan reception
- \star Mtx = 160×160
- **♦** FOV = 240×240

TR/TE = 3.37/1.57 ms slice thickness = 4.5 mm BW = 651Hz/pixel

Phase-Cycled bSSFP, Calibrationless, Acceleration R=2×2

SAKE 5.2% RMSE

Recon time: 82 min Window= 6×6

Poisson sampling Threshold = 1.3

Proposed: Joint NLINV

3.3% **RMSE**

Uniform sampling $\beta_0 = 0.1$

Phase-Cycled bSSFP, Calibrationless, Acceleration R=2×2

Error scaled 10x

Error scaled 10x

Multi-Contrast, Calibrationless, Acceleration R=2×2

Multi-Contrast, Calibrationless, Acceleration R=2×2

SAKE 8.9% RMSE

Recon time: 171 min Window= 6×6

Poisson sampling Threshold = 1.3

Proposed: Joint NLINV

Recon time: 31 min $\alpha_0 = 0.1$

5.2% RMSE

Multi-Contrast, Calibrationless, Acceleration R=2×2

Error scaled 5x

Error scaled 5x

Discussion

- Standard NLINV without calibration is ill-conditioned and results in large errors
- Joint NLINV exploits shared sensitivities and joint sparsity across multiple echoes/contrasts to dramatically improve the recon
- This obviates the need for calibration, with >6-fold reduced RMSE over standard NLINV

Discussion

- Complementary sampling permits formation of a composite image by summing the k-space across echoes
- For spin-echo and MPRAGE where phase discrepancy between echoes is low, composite image has reduced aliasing and is used for initialization
- For phase-cycled bSSFP and multi-contrast, composite image contains significant aliasing and was not used
- This necessitated a larger starting parameter α_0 , which is reduced over iterations to result in negligible regularization in the final recon

Discussion

SAKE: calibrationless from <u>single image</u>
elliptical Poisson sampling [1]

Joint NLINV: allowed 30 - 70 % reduction in RMSE for 32-chan experiments recon time reduced by $3 \times - 6 \times$ fold

Thanks!

Questions / Comments:

berkin@nmr.mgh.harvard.edu

martinos.org/~berkin

Support: NIH R24 MH106096

R01 EB020613

R01 EB017337

U01 HD087211